Optimal. Leaf size=31 \[ 25 x^2 \left (e^{-2+e^{5 e^x}}+\log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 3.74, antiderivative size = 36, normalized size of antiderivative = 1.16, number of steps used = 3, number of rules used = 3, integrand size = 293, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6688, 12, 6687} \begin {gather*} \frac {25 x^2 \left (e^{e^{5 e^x}}+e^2 \log \left (\log \left (\log \left (e^{x-3}-x\right )\right )\right )\right )^2}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 x \left (e^{e^{5 e^x}}+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right ) \left (-e^5 x+e^{2+x} x+\left (e^x-e^3 x\right ) \log \left (e^{-3+x}-x\right ) \log \left (\log \left (e^{-3+x}-x\right )\right ) \left (e^{e^{5 e^x}} \left (1+5 e^{5 e^x+x} x\right )+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right )\right )}{e^4 \left (e^x-e^3 x\right ) \log \left (e^{-3+x}-x\right ) \log \left (\log \left (e^{-3+x}-x\right )\right )} \, dx\\ &=\frac {50 \int \frac {x \left (e^{e^{5 e^x}}+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right ) \left (-e^5 x+e^{2+x} x+\left (e^x-e^3 x\right ) \log \left (e^{-3+x}-x\right ) \log \left (\log \left (e^{-3+x}-x\right )\right ) \left (e^{e^{5 e^x}} \left (1+5 e^{5 e^x+x} x\right )+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right )\right )}{\left (e^x-e^3 x\right ) \log \left (e^{-3+x}-x\right ) \log \left (\log \left (e^{-3+x}-x\right )\right )} \, dx}{e^4}\\ &=\frac {25 x^2 \left (e^{e^{5 e^x}}+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right )^2}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 36, normalized size = 1.16 \begin {gather*} \frac {25 x^2 \left (e^{e^{5 e^x}}+e^2 \log \left (\log \left (\log \left (e^{-3+x}-x\right )\right )\right )\right )^2}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 87, normalized size = 2.81 \begin {gather*} 50 \, x^{2} e^{\left ({\left (e^{\left (x + 5 \, e^{x}\right )} - 2 \, e^{x}\right )} e^{\left (-x\right )}\right )} \log \left (\log \left (\log \left (-{\left (x e^{3} - e^{x}\right )} e^{\left (-3\right )}\right )\right )\right ) + 25 \, x^{2} \log \left (\log \left (\log \left (-{\left (x e^{3} - e^{x}\right )} e^{\left (-3\right )}\right )\right )\right )^{2} + 25 \, x^{2} e^{\left (2 \, {\left (e^{\left (x + 5 \, e^{x}\right )} - 2 \, e^{x}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {50 \, {\left ({\left (x^{2} - x e^{\left (x - 3\right )}\right )} \log \left (-x + e^{\left (x - 3\right )}\right ) \log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right ) \log \left (\log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right )\right )^{2} + {\left (x^{2} + 5 \, {\left (x^{3} - x^{2} e^{\left (x - 3\right )}\right )} e^{\left (x + 5 \, e^{x}\right )} - x e^{\left (x - 3\right )}\right )} e^{\left (2 \, e^{\left (5 \, e^{x}\right )} - 4\right )} \log \left (-x + e^{\left (x - 3\right )}\right ) \log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right ) - {\left (x^{2} e^{\left (x - 3\right )} - x^{2}\right )} e^{\left (e^{\left (5 \, e^{x}\right )} - 2\right )} + {\left ({\left (2 \, x^{2} + 5 \, {\left (x^{3} - x^{2} e^{\left (x - 3\right )}\right )} e^{\left (x + 5 \, e^{x}\right )} - 2 \, x e^{\left (x - 3\right )}\right )} e^{\left (e^{\left (5 \, e^{x}\right )} - 2\right )} \log \left (-x + e^{\left (x - 3\right )}\right ) \log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right ) - x^{2} e^{\left (x - 3\right )} + x^{2}\right )} \log \left (\log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right )\right )\right )}}{{\left (x - e^{\left (x - 3\right )}\right )} \log \left (-x + e^{\left (x - 3\right )}\right ) \log \left (\log \left (-x + e^{\left (x - 3\right )}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 59, normalized size = 1.90
method | result | size |
risch | \(25 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{5 \,{\mathrm e}^{x}}-4}+50 x^{2} {\mathrm e}^{{\mathrm e}^{5 \,{\mathrm e}^{x}}-2} \ln \left (\ln \left (\ln \left ({\mathrm e}^{x -3}-x \right )\right )\right )+25 \ln \left (\ln \left (\ln \left ({\mathrm e}^{x -3}-x \right )\right )\right )^{2} x^{2}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 64, normalized size = 2.06 \begin {gather*} 25 \, {\left (x^{2} e^{4} \log \left (\log \left (\log \left (-x e^{3} + e^{x}\right ) - 3\right )\right )^{2} + 2 \, x^{2} e^{\left (e^{\left (5 \, e^{x}\right )} + 2\right )} \log \left (\log \left (\log \left (-x e^{3} + e^{x}\right ) - 3\right )\right ) + x^{2} e^{\left (2 \, e^{\left (5 \, e^{x}\right )}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\,\ln \left ({\mathrm {e}}^{x-3}-x\right )\,\left (50\,x\,{\mathrm {e}}^{x-3}-50\,x^2\right )\,{\ln \left (\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\right )}^2+\left (50\,x^2\,{\mathrm {e}}^{x-3}-50\,x^2+\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\,{\mathrm {e}}^{{\mathrm {e}}^{5\,{\mathrm {e}}^x}-2}\,\ln \left ({\mathrm {e}}^{x-3}-x\right )\,\left (100\,x\,{\mathrm {e}}^{x-3}-100\,x^2+{\mathrm {e}}^{x+5\,{\mathrm {e}}^x}\,\left (250\,x^2\,{\mathrm {e}}^{x-3}-250\,x^3\right )\right )\right )\,\ln \left (\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\right )+{\mathrm {e}}^{{\mathrm {e}}^{5\,{\mathrm {e}}^x}-2}\,\left (50\,x^2\,{\mathrm {e}}^{x-3}-50\,x^2\right )+\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\,{\mathrm {e}}^{2\,{\mathrm {e}}^{5\,{\mathrm {e}}^x}-4}\,\ln \left ({\mathrm {e}}^{x-3}-x\right )\,\left (50\,x\,{\mathrm {e}}^{x-3}-50\,x^2+{\mathrm {e}}^{x+5\,{\mathrm {e}}^x}\,\left (250\,x^2\,{\mathrm {e}}^{x-3}-250\,x^3\right )\right )}{\ln \left (\ln \left ({\mathrm {e}}^{x-3}-x\right )\right )\,\ln \left ({\mathrm {e}}^{x-3}-x\right )\,\left (x-{\mathrm {e}}^{x-3}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________