Optimal. Leaf size=27 \[ \frac {1+\log \left (3 e^{\frac {4 x^2 (-5+x+\log (x))^2}{\log (x)}}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 51, normalized size of antiderivative = 1.89, number of steps used = 47, number of rules used = 11, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {6688, 2320, 2330, 2298, 2309, 2178, 2356, 2295, 30, 2555, 12} \begin {gather*} \frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2295
Rule 2298
Rule 2309
Rule 2320
Rule 2330
Rule 2356
Rule 2555
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-76-\frac {1}{x^2}+24 x-\frac {4 (-5+x)^2}{\log ^2(x)}+\frac {8 \left (25-15 x+2 x^2\right )}{\log (x)}+8 \log (x)-\frac {\log \left (3 \exp \left (\frac {4 (-5+x) x^2 (-5+x+2 \log (x))}{\log (x)}\right ) x^{4 x^2}\right )}{x^2}\right ) \, dx\\ &=\frac {1}{x}-76 x+12 x^2-4 \int \frac {(-5+x)^2}{\log ^2(x)} \, dx+8 \int \frac {25-15 x+2 x^2}{\log (x)} \, dx+8 \int \log (x) \, dx-\int \frac {\log \left (3 \exp \left (\frac {4 (-5+x) x^2 (-5+x+2 \log (x))}{\log (x)}\right ) x^{4 x^2}\right )}{x^2} \, dx\\ &=\frac {1}{x}-84 x+12 x^2+\frac {4 (5-x)^2 x}{\log (x)}+8 x \log (x)+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+8 \int \left (\frac {25}{\log (x)}-\frac {15 x}{\log (x)}+\frac {2 x^2}{\log (x)}\right ) \, dx-12 \int \frac {(-5+x)^2}{\log (x)} \, dx-40 \int \frac {-5+x}{\log (x)} \, dx+\int 4 \left (19-6 x+\frac {(-5+x)^2}{\log ^2(x)}+\frac {-50+30 x-4 x^2}{\log (x)}-2 \log (x)\right ) \, dx\\ &=\frac {1}{x}-84 x+12 x^2+\frac {4 (5-x)^2 x}{\log (x)}+8 x \log (x)+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+4 \int \left (19-6 x+\frac {(-5+x)^2}{\log ^2(x)}+\frac {-50+30 x-4 x^2}{\log (x)}-2 \log (x)\right ) \, dx-12 \int \left (\frac {25}{\log (x)}-\frac {10 x}{\log (x)}+\frac {x^2}{\log (x)}\right ) \, dx+16 \int \frac {x^2}{\log (x)} \, dx-40 \int \left (-\frac {5}{\log (x)}+\frac {x}{\log (x)}\right ) \, dx-120 \int \frac {x}{\log (x)} \, dx+200 \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{x}-8 x+\frac {4 (5-x)^2 x}{\log (x)}+8 x \log (x)+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+200 \text {li}(x)+4 \int \frac {(-5+x)^2}{\log ^2(x)} \, dx+4 \int \frac {-50+30 x-4 x^2}{\log (x)} \, dx-8 \int \log (x) \, dx-12 \int \frac {x^2}{\log (x)} \, dx+16 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-40 \int \frac {x}{\log (x)} \, dx+120 \int \frac {x}{\log (x)} \, dx-120 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+200 \int \frac {1}{\log (x)} \, dx-300 \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{x}-120 \text {Ei}(2 \log (x))+16 \text {Ei}(3 \log (x))+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+100 \text {li}(x)+4 \int \left (-\frac {50}{\log (x)}+\frac {30 x}{\log (x)}-\frac {4 x^2}{\log (x)}\right ) \, dx+12 \int \frac {(-5+x)^2}{\log (x)} \, dx-12 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+40 \int \frac {-5+x}{\log (x)} \, dx-40 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+120 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {1}{x}-40 \text {Ei}(2 \log (x))+4 \text {Ei}(3 \log (x))+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+100 \text {li}(x)+12 \int \left (\frac {25}{\log (x)}-\frac {10 x}{\log (x)}+\frac {x^2}{\log (x)}\right ) \, dx-16 \int \frac {x^2}{\log (x)} \, dx+40 \int \left (-\frac {5}{\log (x)}+\frac {x}{\log (x)}\right ) \, dx+120 \int \frac {x}{\log (x)} \, dx-200 \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{x}-40 \text {Ei}(2 \log (x))+4 \text {Ei}(3 \log (x))+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}-100 \text {li}(x)+12 \int \frac {x^2}{\log (x)} \, dx-16 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+40 \int \frac {x}{\log (x)} \, dx-120 \int \frac {x}{\log (x)} \, dx+120 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-200 \int \frac {1}{\log (x)} \, dx+300 \int \frac {1}{\log (x)} \, dx\\ &=\frac {1}{x}+80 \text {Ei}(2 \log (x))-12 \text {Ei}(3 \log (x))+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}+12 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+40 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-120 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {1}{x}+\frac {\log \left (3 e^{\frac {4 (5-x)^2 x^2}{\log (x)}} x^{4 x^2-\frac {8 (5-x) x^2}{\log (x)}}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 37, normalized size = 1.37 \begin {gather*} \frac {1+\log \left (3 e^{\frac {4 (-5+x) x^2 (-5+x+2 \log (x))}{\log (x)}} x^{4 x^2}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 50, normalized size = 1.85 \begin {gather*} \frac {4 \, x^{4} + 4 \, x^{2} \log \relax (x)^{2} - 40 \, x^{3} + 100 \, x^{2} + {\left (8 \, x^{3} - 40 \, x^{2} + \log \relax (3) + 1\right )} \log \relax (x)}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 40, normalized size = 1.48 \begin {gather*} 8 \, x^{2} + 4 \, x \log \relax (x) - 40 \, x + \frac {\log \relax (3) + 1}{x} + \frac {4 \, {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 33, normalized size = 1.22
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{\frac {4 \left (\ln \relax (x )+x -5\right )^{2} x^{2}}{\ln \relax (x )}}\right )}{x}+\frac {\ln \relax (3)}{x}+\frac {1}{x}\) | \(33\) |
default | \(\frac {4 x^{3}}{\ln \relax (x )}-\frac {40 x^{2}}{\ln \relax (x )}+\frac {100 x}{\ln \relax (x )}+8 x^{2}-40 x +\frac {1}{x}+4 x \ln \relax (x )+\frac {\ln \left (3 \,{\mathrm e}^{\frac {4 x^{2} \ln \relax (x )^{2}+\left (8 x^{3}-40 x^{2}\right ) \ln \relax (x )+4 x^{4}-40 x^{3}+100 x^{2}}{\ln \relax (x )}}\right )-\frac {4 x^{2} \ln \relax (x )^{2}+\left (8 x^{3}-40 x^{2}\right ) \ln \relax (x )+4 x^{4}-40 x^{3}+100 x^{2}}{\ln \relax (x )}}{x}\) | \(141\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 12 \, x^{2} + 8 \, x \log \relax (x) - 84 \, x + \frac {1}{x} - \frac {4 \, x^{4} + 8 \, x^{2} \log \relax (x)^{2} - 40 \, x^{3} + 100 \, x^{2} + {\left (4 \, x^{3} - 44 \, x^{2} - \log \relax (3)\right )} \log \relax (x) - 4 \, \log \relax (x) \log \left (x^{\left (x^{2}\right )}\right ) - 4 \, \log \relax (x) \log \left (e^{\left (\frac {x^{4}}{\log \relax (x)}\right )}\right ) + 40 \, \log \relax (x) \log \left (e^{\left (\frac {x^{3}}{\log \relax (x)}\right )}\right ) - 100 \, \log \relax (x) \log \left (e^{\left (\frac {x^{2}}{\log \relax (x)}\right )}\right )}{x \log \relax (x)} + 16 \, {\rm Ei}\left (3 \, \log \relax (x)\right ) - 120 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) + 200 \, {\rm Ei}\left (\log \relax (x)\right ) - 100 \, \Gamma \left (-1, -\log \relax (x)\right ) + 80 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) - 12 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) - \int \frac {4 \, {\left (x^{2} - 10 \, x + 25\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.83, size = 122, normalized size = 4.52 \begin {gather*} 60\,x+\frac {4\,x\,{\left (x-5\right )}^2-4\,x\,\ln \relax (x)\,\left (3\,x^2-20\,x+25\right )}{\ln \relax (x)}+4\,x\,\ln \relax (x)-72\,x^2+12\,x^3+\frac {\ln \left (3\,x^{4\,x^2}\,{\mathrm {e}}^{8\,x^3}\,{\mathrm {e}}^{-40\,x^2}\,{\mathrm {e}}^{\frac {4\,x^4}{\ln \relax (x)}}\,{\mathrm {e}}^{-\frac {40\,x^3}{\ln \relax (x)}}\,{\mathrm {e}}^{\frac {100\,x^2}{\ln \relax (x)}}\right )-\frac {4\,x^2\,{\left (x+\ln \relax (x)-5\right )}^2}{\ln \relax (x)}+1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 37, normalized size = 1.37 \begin {gather*} 8 x^{2} + 4 x \log {\relax (x )} - 40 x + \frac {4 x^{3} - 40 x^{2} + 100 x}{\log {\relax (x )}} + \frac {1 + \log {\relax (3 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________