Optimal. Leaf size=23 \[ -5+\frac {4 e^x \log \left (3+e^x\right )}{\log \left (\frac {1}{3} (-5+x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (-20+4 x) \log \left (\frac {1}{3} (-5+x)\right )+\log \left (3+e^x\right ) \left (-12 e^x-4 e^{2 x}+\left (e^{2 x} (-20+4 x)+e^x (-60+12 x)\right ) \log \left (\frac {1}{3} (-5+x)\right )\right )}{\left (-15+e^x (-5+x)+3 x\right ) \log ^2\left (\frac {1}{3} (-5+x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x \left (\frac {e^x \log \left (\frac {1}{3} (-5+x)\right )}{3+e^x}+\frac {\log \left (3+e^x\right ) \left (-1+(-5+x) \log \left (\frac {1}{3} (-5+x)\right )\right )}{-5+x}\right )}{\log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \frac {e^x \left (\frac {e^x \log \left (\frac {1}{3} (-5+x)\right )}{3+e^x}+\frac {\log \left (3+e^x\right ) \left (-1+(-5+x) \log \left (\frac {1}{3} (-5+x)\right )\right )}{-5+x}\right )}{\log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \left (\frac {e^x \left (\log \left (3+e^x\right )+5 \log \left (\frac {1}{3} (-5+x)\right )-x \log \left (\frac {1}{3} (-5+x)\right )+5 \log \left (3+e^x\right ) \log \left (\frac {1}{3} (-5+x)\right )-x \log \left (3+e^x\right ) \log \left (\frac {1}{3} (-5+x)\right )\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )}+\frac {e^x (\log (27)-3 \log (-5+x))}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )}\right ) \, dx\\ &=4 \int \frac {e^x \left (\log \left (3+e^x\right )+5 \log \left (\frac {1}{3} (-5+x)\right )-x \log \left (\frac {1}{3} (-5+x)\right )+5 \log \left (3+e^x\right ) \log \left (\frac {1}{3} (-5+x)\right )-x \log \left (3+e^x\right ) \log \left (\frac {1}{3} (-5+x)\right )\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+4 \int \frac {e^x (\log (27)-3 \log (-5+x))}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \frac {e^x \left (-\left ((-5+x) \log \left (\frac {1}{3} (-5+x)\right )\right )-\log \left (3+e^x\right ) \left (-1+(-5+x) \log \left (\frac {1}{3} (-5+x)\right )\right )\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+4 \int \left (\frac {e^x \log (27)}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )}+\frac {3 e^x \log (-5+x)}{\left (-3-e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )}\right ) \, dx\\ &=4 \int \left (\frac {e^x \log \left (3+e^x\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )}+\frac {e^x \left (1+\log \left (3+e^x\right )\right )}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )}\right ) \, dx+12 \int \frac {e^x \log (-5+x)}{\left (-3-e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+(4 \log (27)) \int \frac {e^x}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \frac {e^x \log \left (3+e^x\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+4 \int \frac {e^x \left (1+\log \left (3+e^x\right )\right )}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+12 \int \frac {e^x \log (-5+x)}{\left (-3-e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+(4 \log (27)) \int \frac {e^x}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \left (\frac {e^x}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )}+\frac {e^x \log \left (3+e^x\right )}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )}\right ) \, dx+4 \int \frac {e^x \log \left (3+e^x\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+12 \int \frac {e^x \log (-5+x)}{\left (-3-e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+(4 \log (27)) \int \frac {e^x}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ &=4 \int \frac {e^x \log \left (3+e^x\right )}{(5-x) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+4 \int \frac {e^x}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+4 \int \frac {e^x \log \left (3+e^x\right )}{\log \left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+12 \int \frac {e^x \log (-5+x)}{\left (-3-e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx+(4 \log (27)) \int \frac {e^x}{\left (3+e^x\right ) \log ^2\left (-\frac {5}{3}+\frac {x}{3}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.56, size = 21, normalized size = 0.91 \begin {gather*} \frac {4 e^x \log \left (3+e^x\right )}{\log \left (\frac {1}{3} (-5+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 17, normalized size = 0.74 \begin {gather*} \frac {4 \, e^{x} \log \left (e^{x} + 3\right )}{\log \left (\frac {1}{3} \, x - \frac {5}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.87 \begin {gather*} -\frac {4 \, e^{x} \log \left (e^{x} + 3\right )}{\log \relax (3) - \log \left (x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.78
method | result | size |
risch | \(\frac {4 \ln \left (3+{\mathrm e}^{x}\right ) {\mathrm e}^{x}}{\ln \left (\frac {x}{3}-\frac {5}{3}\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 20, normalized size = 0.87 \begin {gather*} -\frac {4 \, e^{x} \log \left (e^{x} + 3\right )}{\log \relax (3) - \log \left (x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 17, normalized size = 0.74 \begin {gather*} \frac {4\,{\mathrm {e}}^x\,\ln \left ({\mathrm {e}}^x+3\right )}{\ln \left (\frac {x}{3}-\frac {5}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________