Optimal. Leaf size=25 \[ \frac {25 x^2 \log ^2(\log (x))}{\left (4+\frac {5}{3} e^{2+2 x}\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 2.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (48600 x+20250 e^{2+2 x} x\right ) \log (\log (x))+\left (48600 x+e^{2+2 x} \left (20250 x-81000 x^2\right )\right ) \log (x) \log ^2(\log (x))}{\left (248832+518400 e^{2+2 x}+432000 e^{4+4 x}+180000 e^{6+6 x}+37500 e^{8+8 x}+3125 e^{10+10 x}\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4050 x \log (\log (x)) \left (12+5 e^{2+2 x}-\left (-12+5 e^{2+2 x} (-1+4 x)\right ) \log (x) \log (\log (x))\right )}{\left (12+5 e^{2+2 x}\right )^5 \log (x)} \, dx\\ &=4050 \int \frac {x \log (\log (x)) \left (12+5 e^{2+2 x}-\left (-12+5 e^{2+2 x} (-1+4 x)\right ) \log (x) \log (\log (x))\right )}{\left (12+5 e^{2+2 x}\right )^5 \log (x)} \, dx\\ &=4050 \int \left (\frac {48 x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^5}-\frac {x \log (\log (x)) (-1-\log (x) \log (\log (x))+4 x \log (x) \log (\log (x)))}{\left (12+5 e^{2+2 x}\right )^4 \log (x)}\right ) \, dx\\ &=-\left (4050 \int \frac {x \log (\log (x)) (-1-\log (x) \log (\log (x))+4 x \log (x) \log (\log (x)))}{\left (12+5 e^{2+2 x}\right )^4 \log (x)} \, dx\right )+194400 \int \frac {x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^5} \, dx\\ &=-\left (4050 \int \left (-\frac {x \log (\log (x))}{\left (12+5 e^{2+2 x}\right )^4 \log (x)}-\frac {x \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^4}+\frac {4 x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^4}\right ) \, dx\right )+194400 \int \frac {x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^5} \, dx\\ &=4050 \int \frac {x \log (\log (x))}{\left (12+5 e^{2+2 x}\right )^4 \log (x)} \, dx+4050 \int \frac {x \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^4} \, dx-16200 \int \frac {x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^4} \, dx+194400 \int \frac {x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 23, normalized size = 0.92 \begin {gather*} \frac {2025 x^2 \log ^2(\log (x))}{\left (12+5 e^{2+2 x}\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 46, normalized size = 1.84 \begin {gather*} \frac {2025 \, x^{2} \log \left (\log \relax (x)\right )^{2}}{625 \, e^{\left (8 \, x + 8\right )} + 6000 \, e^{\left (6 \, x + 6\right )} + 21600 \, e^{\left (4 \, x + 4\right )} + 34560 \, e^{\left (2 \, x + 2\right )} + 20736} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 46, normalized size = 1.84 \begin {gather*} \frac {2025 \, x^{2} \log \left (\log \relax (x)\right )^{2}}{625 \, e^{\left (8 \, x + 8\right )} + 6000 \, e^{\left (6 \, x + 6\right )} + 21600 \, e^{\left (4 \, x + 4\right )} + 34560 \, e^{\left (2 \, x + 2\right )} + 20736} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.92
method | result | size |
risch | \(\frac {2025 x^{2} \ln \left (\ln \relax (x )\right )^{2}}{\left (5 \,{\mathrm e}^{2 x +2}+12\right )^{4}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 46, normalized size = 1.84 \begin {gather*} \frac {2025 \, x^{2} \log \left (\log \relax (x)\right )^{2}}{625 \, e^{\left (8 \, x + 8\right )} + 6000 \, e^{\left (6 \, x + 6\right )} + 21600 \, e^{\left (4 \, x + 4\right )} + 34560 \, e^{\left (2 \, x + 2\right )} + 20736} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.36, size = 46, normalized size = 1.84 \begin {gather*} \frac {81\,x^2\,{\ln \left (\ln \relax (x)\right )}^2}{25\,\left (\frac {6912\,{\mathrm {e}}^{2\,x+2}}{125}+\frac {864\,{\mathrm {e}}^{4\,x+4}}{25}+\frac {48\,{\mathrm {e}}^{6\,x+6}}{5}+{\mathrm {e}}^{8\,x+8}+\frac {20736}{625}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 49, normalized size = 1.96 \begin {gather*} \frac {81 x^{2} \log {\left (\log {\relax (x )} \right )}^{2}}{\frac {6912 e^{2 x + 2}}{5} + 864 e^{4 x + 4} + 240 e^{6 x + 6} + 25 e^{8 x + 8} + \frac {20736}{25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________