Optimal. Leaf size=25 \[ -3+e^x x \log \left (\log ^2\left (x+\log \left (x-2 (1+x+\log (3))^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (10 x+14 x^2+4 x^3+\left (16 x+8 x^2\right ) \log (3)+4 x \log ^2(3)\right )+\left (e^x \left (2 x+5 x^2+5 x^3+2 x^4+\left (4 x+8 x^2+4 x^3\right ) \log (3)+\left (2 x+2 x^2\right ) \log ^2(3)\right )+e^x \left (2+5 x+5 x^2+2 x^3+\left (4+8 x+4 x^2\right ) \log (3)+(2+2 x) \log ^2(3)\right ) \log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (\log ^2\left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right )\right )}{\left (2 x+3 x^2+2 x^3+\left (4 x+4 x^2\right ) \log (3)+2 x \log ^2(3)+\left (2+3 x+2 x^2+(4+4 x) \log (3)+2 \log ^2(3)\right ) \log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (10 x+14 x^2+4 x^3+\left (16 x+8 x^2\right ) \log (3)+4 x \log ^2(3)\right )+\left (e^x \left (2 x+5 x^2+5 x^3+2 x^4+\left (4 x+8 x^2+4 x^3\right ) \log (3)+\left (2 x+2 x^2\right ) \log ^2(3)\right )+e^x \left (2+5 x+5 x^2+2 x^3+\left (4+8 x+4 x^2\right ) \log (3)+(2+2 x) \log ^2(3)\right ) \log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (\log ^2\left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right )\right )}{\left (3 x^2+2 x^3+\left (4 x+4 x^2\right ) \log (3)+x \left (2+2 \log ^2(3)\right )+\left (2+3 x+2 x^2+(4+4 x) \log (3)+2 \log ^2(3)\right ) \log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right ) \log \left (x+\log \left (-2-3 x-2 x^2+(-4-4 x) \log (3)-2 \log ^2(3)\right )\right )} \, dx\\ &=\int e^x \left (\frac {2 x \left (5+2 x^2+8 \log (3)+2 \log ^2(3)+x (7+\log (81))\right )}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+(1+x) \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right )\right ) \, dx\\ &=\int \left (\frac {2 e^x x \left (5+2 x^2+8 \log (3)+2 \log ^2(3)+x (7+\log (81))\right )}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+e^x (1+x) \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right )\right ) \, dx\\ &=2 \int \frac {e^x x \left (5+2 x^2+8 \log (3)+2 \log ^2(3)+x (7+\log (81))\right )}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\int e^x (1+x) \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx\\ &=2 \int \left (\frac {2 e^x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+\frac {e^x x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+\frac {e^x \left (-4-4 \log ^2(3)-x (3+\log (81))-\log (6561)\right )}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}\right ) \, dx+\int \left (e^x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right )+e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right )\right ) \, dx\\ &=2 \int \frac {e^x x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+2 \int \frac {e^x \left (-4-4 \log ^2(3)-x (3+\log (81))-\log (6561)\right )}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+4 \int \frac {e^x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\int e^x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx+\int e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx\\ &=2 \int \left (\frac {4 e^x \left (1+\log ^2(3)+\log (9)\right )}{\left (-2-2 x^2-2 \log ^2(3)-\log (81)-x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+\frac {e^x x (-3-\log (81))}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}\right ) \, dx+2 \int \frac {e^x x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+4 \int \frac {e^x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\int e^x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx+\int e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx\\ &=2 \int \frac {e^x x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+4 \int \frac {e^x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\left (8 \left (1+\log ^2(3)+\log (9)\right )\right ) \int \frac {e^x}{\left (-2-2 x^2-2 \log ^2(3)-\log (81)-x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx-(2 (3+\log (81))) \int \frac {e^x x}{\left (2+2 x^2+2 \log ^2(3)+\log (81)+x (3+\log (81))\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\int e^x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx+\int e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx\\ &=2 \int \frac {e^x x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+4 \int \frac {e^x}{\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )} \, dx+\left (8 \left (1+\log ^2(3)+\log (9)\right )\right ) \int \left (-\frac {4 i e^x}{\sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)} \left (-3-4 x-\log (81)+i \sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)}\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}-\frac {4 i e^x}{\sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)} \left (3+4 x+\log (81)+i \sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)}\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}\right ) \, dx-(2 (3+\log (81))) \int \left (\frac {e^x \left (1-\frac {i (3+\log (81))}{\sqrt {7+16 \log ^2(3)-\log ^2(81)+\log (6561)}}\right )}{\left (3+4 x+\log (81)+i \sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)}\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}+\frac {e^x \left (1+\frac {i (3+\log (81))}{\sqrt {7+16 \log ^2(3)-\log ^2(81)+\log (6561)}}\right )}{\left (3+4 x+\log (81)-i \sqrt {7+16 \log ^2(3)+2 \log (81)-\log ^2(81)}\right ) \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right ) \log \left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )}\right ) \, dx+\int e^x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx+\int e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 33, normalized size = 1.32 \begin {gather*} e^x x \log \left (\log ^2\left (x+\log \left (-2 x^2-2 (1+\log (3))^2-x (3+\log (81))\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 34, normalized size = 1.36 \begin {gather*} x e^{x} \log \left (\log \left (x + \log \left (-2 \, x^{2} - 4 \, {\left (x + 1\right )} \log \relax (3) - 2 \, \log \relax (3)^{2} - 3 \, x - 2\right )\right )^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 67.41, size = 36, normalized size = 1.44 \begin {gather*} x e^{x} \log \left (\log \left (x + \log \left (-2 \, x^{2} - 4 \, x \log \relax (3) - 2 \, \log \relax (3)^{2} - 3 \, x - 4 \, \log \relax (3) - 2\right )\right )^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 216, normalized size = 8.64
method | result | size |
risch | \(2 x \,{\mathrm e}^{x} \ln \left (\ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )\right )-\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )^{2}\right ) \left (\mathrm {csgn}\left (i \ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )\right )^{2}-2 \,\mathrm {csgn}\left (i \ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )^{2}\right ) \mathrm {csgn}\left (i \ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )\right )+\mathrm {csgn}\left (i \ln \left (\ln \left (-2 \ln \relax (3)^{2}+\left (-4 x -4\right ) \ln \relax (3)-2 x^{2}-3 x -2\right )+x \right )^{2}\right )^{2}\right ) x \,{\mathrm e}^{x}}{2}\) | \(216\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 36, normalized size = 1.44 \begin {gather*} 2 \, x e^{x} \log \left (\log \left (x + \log \left (-2 \, x^{2} - x {\left (4 \, \log \relax (3) + 3\right )} - 2 \, \log \relax (3)^{2} - 4 \, \log \relax (3) - 2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (10\,x+\ln \relax (3)\,\left (8\,x^2+16\,x\right )+4\,x\,{\ln \relax (3)}^2+14\,x^2+4\,x^3\right )+\ln \left ({\ln \left (x+\ln \left (-3\,x-\ln \relax (3)\,\left (4\,x+4\right )-2\,{\ln \relax (3)}^2-2\,x^2-2\right )\right )}^2\right )\,\ln \left (x+\ln \left (-3\,x-\ln \relax (3)\,\left (4\,x+4\right )-2\,{\ln \relax (3)}^2-2\,x^2-2\right )\right )\,\left ({\mathrm {e}}^x\,\left (2\,x+\ln \relax (3)\,\left (4\,x^3+8\,x^2+4\,x\right )+{\ln \relax (3)}^2\,\left (2\,x^2+2\,x\right )+5\,x^2+5\,x^3+2\,x^4\right )+\ln \left (-3\,x-\ln \relax (3)\,\left (4\,x+4\right )-2\,{\ln \relax (3)}^2-2\,x^2-2\right )\,{\mathrm {e}}^x\,\left (5\,x+\ln \relax (3)\,\left (4\,x^2+8\,x+4\right )+{\ln \relax (3)}^2\,\left (2\,x+2\right )+5\,x^2+2\,x^3+2\right )\right )}{\ln \left (x+\ln \left (-3\,x-\ln \relax (3)\,\left (4\,x+4\right )-2\,{\ln \relax (3)}^2-2\,x^2-2\right )\right )\,\left (2\,x+\ln \left (-3\,x-\ln \relax (3)\,\left (4\,x+4\right )-2\,{\ln \relax (3)}^2-2\,x^2-2\right )\,\left (3\,x+\ln \relax (3)\,\left (4\,x+4\right )+2\,{\ln \relax (3)}^2+2\,x^2+2\right )+\ln \relax (3)\,\left (4\,x^2+4\,x\right )+2\,x\,{\ln \relax (3)}^2+3\,x^2+2\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________