Optimal. Leaf size=31 \[ 1+\frac {-\frac {1}{9} (7-2 x)^2+\frac {5}{x}+\frac {x}{3}}{e x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 27, normalized size of antiderivative = 0.87, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 14} \begin {gather*} \frac {5}{e x^2}-\frac {4 x}{9 e}-\frac {49}{9 e x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-90+49 x-4 x^3}{x^3} \, dx}{9 e}\\ &=\frac {\int \left (-4-\frac {90}{x^3}+\frac {49}{x^2}\right ) \, dx}{9 e}\\ &=\frac {5}{e x^2}-\frac {49}{9 e x}-\frac {4 x}{9 e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.68 \begin {gather*} -\frac {-\frac {45}{x^2}+\frac {49}{x}+4 x}{9 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 17, normalized size = 0.55 \begin {gather*} -\frac {{\left (4 \, x^{3} + 49 \, x - 45\right )} e^{\left (-1\right )}}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.55 \begin {gather*} -\frac {1}{9} \, {\left (4 \, x + \frac {49 \, x - 45}{x^{2}}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.61
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{-1} x}{9}+\frac {{\mathrm e}^{-1} \left (-49 x +45\right )}{9 x^{2}}\) | \(19\) |
gosper | \(-\frac {\left (4 x^{3}+49 x -45\right ) {\mathrm e}^{-1}}{9 x^{2}}\) | \(20\) |
default | \(\frac {{\mathrm e}^{-1} \left (-4 x +\frac {45}{x^{2}}-\frac {49}{x}\right )}{9}\) | \(21\) |
norman | \(\frac {5 \,{\mathrm e}^{-1}-\frac {49 \,{\mathrm e}^{-1} x}{9}-\frac {4 \,{\mathrm e}^{-1} x^{3}}{9}}{x^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 17, normalized size = 0.55 \begin {gather*} -\frac {1}{9} \, {\left (4 \, x + \frac {49 \, x - 45}{x^{2}}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.11, size = 17, normalized size = 0.55 \begin {gather*} -\frac {{\mathrm {e}}^{-1}\,\left (4\,x^3+49\,x-45\right )}{9\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 17, normalized size = 0.55 \begin {gather*} \frac {- 4 x - \frac {49 x - 45}{x^{2}}}{9 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________