Optimal. Leaf size=25 \[ \frac {40}{3 \left (-1+\frac {e^{x (2+x)}}{1+e^x}\right )+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-40-80 e^x-40 e^{2 x}+e^{2 x+x^2} \left (-240+e^x (-120-240 x)-240 x\right )}{9+9 e^{4 x+2 x^2}-6 x+x^2+e^{2 x} \left (9-6 x+x^2\right )+e^x \left (18-12 x+2 x^2\right )+e^{2 x+x^2} \left (-18+6 x+e^x (-18+6 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40 \left (-1-2 e^x-e^{2 x}-6 e^{x (2+x)} (1+x)-e^{x (3+x)} (3+6 x)\right )}{\left (3-3 e^{x (2+x)}-e^x (-3+x)-x\right )^2} \, dx\\ &=40 \int \frac {-1-2 e^x-e^{2 x}-6 e^{x (2+x)} (1+x)-e^{x (3+x)} (3+6 x)}{\left (3-3 e^{x (2+x)}-e^x (-3+x)-x\right )^2} \, dx\\ &=40 \int \left (\frac {3 e^{3 x+x^2} (-1-2 x)}{\left (3+3 e^x-3 e^{x (2+x)}-x-e^x x\right )^2}+\frac {6 e^{2 x+x^2} (-1-x)}{\left (3+3 e^x-3 e^{x (2+x)}-x-e^x x\right )^2}-\frac {1}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}-\frac {2 e^x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}-\frac {e^{2 x}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}\right ) \, dx\\ &=-\left (40 \int \frac {1}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx\right )-40 \int \frac {e^{2 x}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-80 \int \frac {e^x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx+120 \int \frac {e^{3 x+x^2} (-1-2 x)}{\left (3+3 e^x-3 e^{x (2+x)}-x-e^x x\right )^2} \, dx+240 \int \frac {e^{2 x+x^2} (-1-x)}{\left (3+3 e^x-3 e^{x (2+x)}-x-e^x x\right )^2} \, dx\\ &=-\left (40 \int \frac {1}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx\right )-40 \int \frac {e^{2 x}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-80 \int \frac {e^x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx+120 \int \left (-\frac {e^{3 x+x^2}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}-\frac {2 e^{3 x+x^2} x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}\right ) \, dx+240 \int \left (-\frac {e^{2 x+x^2}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}-\frac {e^{2 x+x^2} x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2}\right ) \, dx\\ &=-\left (40 \int \frac {1}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx\right )-40 \int \frac {e^{2 x}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-80 \int \frac {e^x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-120 \int \frac {e^{3 x+x^2}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-240 \int \frac {e^{2 x+x^2}}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-240 \int \frac {e^{2 x+x^2} x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx-240 \int \frac {e^{3 x+x^2} x}{\left (-3-3 e^x+3 e^{x (2+x)}+x+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.82, size = 28, normalized size = 1.12 \begin {gather*} \frac {40 \left (1+e^x\right )}{-3+3 e^{x (2+x)}+e^x (-3+x)+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 27, normalized size = 1.08 \begin {gather*} \frac {40 \, {\left (e^{x} + 1\right )}}{{\left (x - 3\right )} e^{x} + x + 3 \, e^{\left (x^{2} + 2 \, x\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 29, normalized size = 1.16 \begin {gather*} \frac {40 \, {\left (e^{x} + 1\right )}}{x e^{x} + x + 3 \, e^{\left (x^{2} + 2 \, x\right )} - 3 \, e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 28, normalized size = 1.12
method | result | size |
risch | \(\frac {40 \,{\mathrm e}^{x}+40}{{\mathrm e}^{x} x -3 \,{\mathrm e}^{x}+3 \,{\mathrm e}^{x \left (2+x \right )}+x -3}\) | \(28\) |
norman | \(\frac {40 \,{\mathrm e}^{x}+40}{{\mathrm e}^{x} x -3 \,{\mathrm e}^{x}+3 \,{\mathrm e}^{x^{2}+2 x}+x -3}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 27, normalized size = 1.08 \begin {gather*} \frac {40 \, {\left (e^{x} + 1\right )}}{{\left (x - 3\right )} e^{x} + x + 3 \, e^{\left (x^{2} + 2 \, x\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {40\,{\mathrm {e}}^{2\,x}+80\,{\mathrm {e}}^x+{\mathrm {e}}^{x^2+2\,x}\,\left (240\,x+{\mathrm {e}}^x\,\left (240\,x+120\right )+240\right )+40}{9\,{\mathrm {e}}^{2\,x^2+4\,x}-6\,x+{\mathrm {e}}^{x^2+2\,x}\,\left (6\,x+{\mathrm {e}}^x\,\left (6\,x-18\right )-18\right )+{\mathrm {e}}^{2\,x}\,\left (x^2-6\,x+9\right )+{\mathrm {e}}^x\,\left (2\,x^2-12\,x+18\right )+x^2+9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 29, normalized size = 1.16 \begin {gather*} \frac {40 e^{x} + 40}{x e^{x} + x - 3 e^{x} + 3 e^{x^{2} + 2 x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________