Optimal. Leaf size=23 \[ (4+x) \left (e^5+\log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (e^5 x^2+e^5 x \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right )+\left (-16 x-4 x^2+(-8-2 x) \log (8)+\left (8 x+2 x^2+(8+2 x) \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right )\right ) \log \left (\frac {x}{\log \left (-12 x^2-12 x \log (8)\right )}\right )+\left (x^2+x \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right ) \log ^2\left (\frac {x}{\log \left (-12 x^2-12 x \log (8)\right )}\right )}{\left (x^2+x \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (e^5 x^2+e^5 x \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right )+\left (-16 x-4 x^2+(-8-2 x) \log (8)+\left (8 x+2 x^2+(8+2 x) \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right )\right ) \log \left (\frac {x}{\log \left (-12 x^2-12 x \log (8)\right )}\right )+\left (x^2+x \log (8)\right ) \log \left (-12 x^2-12 x \log (8)\right ) \log ^2\left (\frac {x}{\log \left (-12 x^2-12 x \log (8)\right )}\right )}{x (x+\log (8)) \log \left (-12 x^2-12 x \log (8)\right )} \, dx\\ &=\int \frac {e^5 x^2+e^5 x \log (8)+\frac {2 (4+x) (-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))}+x (x+\log (8)) \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x (x+\log (8))} \, dx\\ &=\int \left (e^5+\frac {2 (4+x) (-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x (x+\log (8)) \log (-12 x (x+\log (8)))}+\log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right )\right ) \, dx\\ &=e^5 x+2 \int \frac {(4+x) (-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x (x+\log (8)) \log (-12 x (x+\log (8)))} \, dx+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+2 \int \frac {(4+x) (-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x (x+\log (8)) \log (-12 x (x+\log (8)))} \, dx+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+2 \int \left (\frac {4 (-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (8) \log (-12 x (x+\log (8)))}+\frac {(-4+\log (8)) (-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8) (x+\log (8)) \log (-12 x (x+\log (8)))}\right ) \, dx+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+\frac {8 \int \frac {(-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \frac {(-2 x-\log (8)+x \log (-12 x (x+\log (8)))+\log (8) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+\frac {8 \int \frac {(-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \frac {(-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+\frac {8 \int \left (\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )+\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x}-\frac {2 \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))}-\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \left (\frac {x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)}+\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)}-\frac {2 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))}-\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx+(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx+\frac {8 \int \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \frac {x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)} \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \frac {x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+\frac {8 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx+(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-\frac {8 \int \frac {-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \left (\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )-\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x+\log (8)}\right ) \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \left (\frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))}-\frac {\log (8) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x+\frac {8 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx-(4 (4-\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-\frac {8 \int \left (1+\frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\frac {(2 (-4+\log (8))) \int \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x-\frac {8 x}{\log (8)}+\frac {8 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}-\frac {2 x (4-\log (8)) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx-(4 (4-\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-\frac {8 \int \frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {(2 (-4+\log (8))) \int \frac {-2 x-\log (8)+(x+\log (8)) \log (-12 x (x+\log (8)))}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x-\frac {8 x}{\log (8)}+\frac {8 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}-\frac {2 x (4-\log (8)) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx-(4 (4-\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-\frac {8 \int \frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {(2 (-4+\log (8))) \int \left (1+\frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))}\right ) \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ &=e^5 x-\frac {8 x}{\log (8)}+\frac {2 x (4-\log (8))}{\log (8)}+\frac {8 x \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}-\frac {2 x (4-\log (8)) \log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (8)}+8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x} \, dx-8 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{x \log (-12 x (x+\log (8)))} \, dx-(4 (4-\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-(2 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx-\frac {8 \int \frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {16 \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {(2 (-4+\log (8))) \int \frac {-2 x-\log (8)}{(x+\log (8)) \log (-12 x (x+\log (8)))} \, dx}{\log (8)}-\frac {(4 (-4+\log (8))) \int \frac {\log \left (\frac {x}{\log (-12 x (x+\log (8)))}\right )}{\log (-12 x (x+\log (8)))} \, dx}{\log (8)}+\int \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 25, normalized size = 1.09 \begin {gather*} e^5 x+(4+x) \log ^2\left (\frac {x}{\log (-12 x (x+\log (8)))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 28, normalized size = 1.22 \begin {gather*} {\left (x + 4\right )} \log \left (\frac {x}{\log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right )}\right )^{2} + x e^{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} + 3 \, x \log \relax (2)\right )} \log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right ) \log \left (\frac {x}{\log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right )}\right )^{2} + {\left (x^{2} e^{5} + 3 \, x e^{5} \log \relax (2)\right )} \log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right ) - 2 \, {\left (2 \, x^{2} + 3 \, {\left (x + 4\right )} \log \relax (2) - {\left (x^{2} + 3 \, {\left (x + 4\right )} \log \relax (2) + 4 \, x\right )} \log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right ) + 8 \, x\right )} \log \left (\frac {x}{\log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right )}\right )}{{\left (x^{2} + 3 \, x \log \relax (2)\right )} \log \left (-12 \, x^{2} - 36 \, x \log \relax (2)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (3 x \ln \relax (2)+x^{2}\right ) \ln \left (-36 x \ln \relax (2)-12 x^{2}\right ) \ln \left (\frac {x}{\ln \left (-36 x \ln \relax (2)-12 x^{2}\right )}\right )^{2}+\left (\left (3 \left (2 x +8\right ) \ln \relax (2)+2 x^{2}+8 x \right ) \ln \left (-36 x \ln \relax (2)-12 x^{2}\right )+3 \left (-2 x -8\right ) \ln \relax (2)-4 x^{2}-16 x \right ) \ln \left (\frac {x}{\ln \left (-36 x \ln \relax (2)-12 x^{2}\right )}\right )+\left (3 x \,{\mathrm e}^{5} \ln \relax (2)+x^{2} {\mathrm e}^{5}\right ) \ln \left (-36 x \ln \relax (2)-12 x^{2}\right )}{\left (3 x \ln \relax (2)+x^{2}\right ) \ln \left (-36 x \ln \relax (2)-12 x^{2}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.56, size = 94, normalized size = 4.09 \begin {gather*} {\left (x + 4\right )} \log \left (i \, \pi + \log \relax (3) + 2 \, \log \relax (2) + \log \left (x + 3 \, \log \relax (2)\right ) + \log \relax (x)\right )^{2} + 3 \, e^{5} \log \relax (2) \log \left (x + 3 \, \log \relax (2)\right ) - 2 \, {\left (x + 4\right )} \log \left (i \, \pi + \log \relax (3) + 2 \, \log \relax (2) + \log \left (x + 3 \, \log \relax (2)\right ) + \log \relax (x)\right ) \log \relax (x) + {\left (x + 4\right )} \log \relax (x)^{2} - {\left (3 \, \log \relax (2) \log \left (x + 3 \, \log \relax (2)\right ) - x\right )} e^{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )\,\left (x^2+3\,\ln \relax (2)\,x\right )\,{\ln \left (\frac {x}{\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )}\right )}^2+\left (\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )\,\left (8\,x+3\,\ln \relax (2)\,\left (2\,x+8\right )+2\,x^2\right )-3\,\ln \relax (2)\,\left (2\,x+8\right )-16\,x-4\,x^2\right )\,\ln \left (\frac {x}{\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )}\right )+\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )\,\left ({\mathrm {e}}^5\,x^2+3\,{\mathrm {e}}^5\,\ln \relax (2)\,x\right )}{\ln \left (-12\,x^2-36\,\ln \relax (2)\,x\right )\,\left (x^2+3\,\ln \relax (2)\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.02, size = 27, normalized size = 1.17 \begin {gather*} x e^{5} + \left (x + 4\right ) \log {\left (\frac {x}{\log {\left (- 12 x^{2} - 36 x \log {\relax (2 )} \right )}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________