Optimal. Leaf size=32 \[ e^{\frac {e^2 ((-1+x) x+\log (x))}{5-\frac {3-x}{20-x}}} \]
________________________________________________________________________________________
Rubi [F] time = 4.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^2 \left (20 x-21 x^2+x^3\right )+e^2 (-20+x) \log (x)}{-97+4 x}\right ) \left (e^2 \left (1940-2117 x+4078 x^2-375 x^3+8 x^4\right )-17 e^2 x \log (x)\right )}{9409 x-776 x^2+16 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^2 \left (20 x-21 x^2+x^3\right )+e^2 (-20+x) \log (x)}{-97+4 x}\right ) \left (e^2 \left (1940-2117 x+4078 x^2-375 x^3+8 x^4\right )-17 e^2 x \log (x)\right )}{x \left (9409-776 x+16 x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {e^2 \left (20 x-21 x^2+x^3\right )+e^2 (-20+x) \log (x)}{-97+4 x}\right ) \left (e^2 \left (1940-2117 x+4078 x^2-375 x^3+8 x^4\right )-17 e^2 x \log (x)\right )}{x (-97+4 x)^2} \, dx\\ &=\int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \left (1940-2117 x+4078 x^2-375 x^3+8 x^4-17 x \log (x)\right )}{(97-4 x)^2 x} \, dx\\ &=\int \left (-\frac {2117 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2}+\frac {1940 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{x (-97+4 x)^2}+\frac {4078 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x}{(-97+4 x)^2}-\frac {375 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x^2}{(-97+4 x)^2}+\frac {8 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x^3}{(-97+4 x)^2}-\frac {17 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \log (x)}{(-97+4 x)^2}\right ) \, dx\\ &=8 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x^3}{(-97+4 x)^2} \, dx-17 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \log (x)}{(-97+4 x)^2} \, dx-375 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x^2}{(-97+4 x)^2} \, dx+1940 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{x (-97+4 x)^2} \, dx-2117 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx+4078 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x}{(-97+4 x)^2} \, dx\\ &=8 \int \left (\frac {97}{32} \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )+\frac {1}{16} \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x+\frac {912673 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{64 (-97+4 x)^2}+\frac {28227 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{64 (-97+4 x)}\right ) \, dx-17 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \log (x)}{(-97+4 x)^2} \, dx-375 \int \left (\frac {1}{16} \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )+\frac {9409 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{16 (-97+4 x)^2}+\frac {97 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{8 (-97+4 x)}\right ) \, dx+1940 \int \left (\frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{9409 x}+\frac {4 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{97 (-97+4 x)^2}-\frac {4 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{9409 (-97+4 x)}\right ) \, dx-2117 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx+4078 \int \left (\frac {97 \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{4 (-97+4 x)^2}+\frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{4 (-97+4 x)}\right ) \, dx\\ &=\frac {20}{97} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{x} \, dx+\frac {1}{2} \int \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) x \, dx-\frac {80}{97} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{-97+4 x} \, dx-17 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \log (x)}{(-97+4 x)^2} \, dx-\frac {375}{16} \int \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \, dx+\frac {97}{4} \int \exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right ) \, dx+80 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx+\frac {2039}{2} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{-97+4 x} \, dx-2117 \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx+\frac {28227}{8} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{-97+4 x} \, dx-\frac {36375}{8} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{-97+4 x} \, dx+\frac {197783}{2} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx+\frac {912673}{8} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx-\frac {3528375}{16} \int \frac {\exp \left (2+\frac {e^2 (-20+x) \left (-x+x^2+\log (x)\right )}{-97+4 x}\right )}{(-97+4 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.55, size = 39, normalized size = 1.22 \begin {gather*} e^{\frac {e^2 x \left (20-21 x+x^2\right )}{-97+4 x}} x^{\frac {e^2 (-20+x)}{-97+4 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.03 \begin {gather*} e^{\left (\frac {{\left (x - 20\right )} e^{2} \log \relax (x) + {\left (x^{3} - 21 \, x^{2} + 20 \, x\right )} e^{2}}{4 \, x - 97}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 67, normalized size = 2.09 \begin {gather*} e^{\left (\frac {x^{3} e^{2}}{4 \, x - 97} - \frac {21 \, x^{2} e^{2}}{4 \, x - 97} + \frac {x e^{2} \log \relax (x)}{4 \, x - 97} + \frac {20 \, x e^{2}}{4 \, x - 97} - \frac {20 \, e^{2} \log \relax (x)}{4 \, x - 97}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 24, normalized size = 0.75
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{2} \left (x -20\right ) \left (x^{2}+\ln \relax (x )-x \right )}{4 x -97}}\) | \(24\) |
norman | \(\frac {4 x \,{\mathrm e}^{\frac {\left (x -20\right ) {\mathrm e}^{2} \ln \relax (x )+\left (x^{3}-21 x^{2}+20 x \right ) {\mathrm e}^{2}}{4 x -97}}-97 \,{\mathrm e}^{\frac {\left (x -20\right ) {\mathrm e}^{2} \ln \relax (x )+\left (x^{3}-21 x^{2}+20 x \right ) {\mathrm e}^{2}}{4 x -97}}}{4 x -97}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 24.29, size = 48, normalized size = 1.50 \begin {gather*} e^{\left (\frac {1}{4} \, x^{2} e^{2} + \frac {13}{16} \, x e^{2} + \frac {1}{4} \, e^{2} \log \relax (x) + \frac {17 \, e^{2} \log \relax (x)}{4 \, {\left (4 \, x - 97\right )}} + \frac {153357 \, e^{2}}{64 \, {\left (4 \, x - 97\right )}} + \frac {1581}{64} \, e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.40, size = 65, normalized size = 2.03 \begin {gather*} \frac {{\mathrm {e}}^{\frac {20\,x\,{\mathrm {e}}^2}{4\,x-97}}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^2}{4\,x-97}}\,{\mathrm {e}}^{-\frac {21\,x^2\,{\mathrm {e}}^2}{4\,x-97}}}{x^{\frac {20\,{\mathrm {e}}^2-x\,{\mathrm {e}}^2}{4\,x-97}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 31, normalized size = 0.97 \begin {gather*} e^{\frac {\left (x - 20\right ) e^{2} \log {\relax (x )} + \left (x^{3} - 21 x^{2} + 20 x\right ) e^{2}}{4 x - 97}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________