Optimal. Leaf size=24 \[ 5+\frac {\log \left (8-\frac {5}{x}+\frac {5 x}{4}+(-2+x) x\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 5.74, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 26, number of rules used = 11, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {6741, 6742, 2100, 2081, 2079, 800, 634, 618, 204, 628, 2525} \begin {gather*} \frac {\log \left (x^2-\frac {3 x}{4}-\frac {5}{x}+8\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 2079
Rule 2081
Rule 2100
Rule 2525
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20+3 x^2-8 x^3-\left (20-32 x+3 x^2-4 x^3\right ) \log \left (\frac {-20+32 x-3 x^2+4 x^3}{4 x}\right )}{x^2 \left (20-32 x+3 x^2-4 x^3\right )} \, dx\\ &=\int \left (\frac {20-3 x^2+8 x^3}{x^2 \left (-20+32 x-3 x^2+4 x^3\right )}-\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x^2}\right ) \, dx\\ &=\int \frac {20-3 x^2+8 x^3}{x^2 \left (-20+32 x-3 x^2+4 x^3\right )} \, dx-\int \frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x^2} \, dx\\ &=\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}-\int \frac {\frac {3}{4}-\frac {5}{x^2}-2 x}{5-8 x+\frac {3 x^2}{4}-x^3} \, dx+\int \left (-\frac {1}{x^2}-\frac {8}{5 x}+\frac {2 \left (113+18 x+16 x^2\right )}{5 \left (-20+32 x-3 x^2+4 x^3\right )}\right ) \, dx\\ &=\frac {1}{x}-\frac {8 \log (x)}{5}+\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}+\frac {2}{5} \int \frac {113+18 x+16 x^2}{-20+32 x-3 x^2+4 x^3} \, dx-\int \left (-\frac {1}{x^2}-\frac {8}{5 x}+\frac {2 \left (113+18 x+16 x^2\right )}{5 \left (-20+32 x-3 x^2+4 x^3\right )}\right ) \, dx\\ &=\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}+\frac {8}{15} \log \left (-20+32 x-3 x^2+4 x^3\right )+\frac {1}{30} \int \frac {844+312 x}{-20+32 x-3 x^2+4 x^3} \, dx-\frac {2}{5} \int \frac {113+18 x+16 x^2}{-20+32 x-3 x^2+4 x^3} \, dx\\ &=\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}-\frac {1}{30} \int \frac {844+312 x}{-20+32 x-3 x^2+4 x^3} \, dx+\frac {1}{30} \operatorname {Subst}\left (\int \frac {922+312 x}{-\frac {97}{8}+\frac {125 x}{4}+4 x^3} \, dx,x,-\frac {1}{4}+x\right )\\ &=\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}-\frac {1}{30} \operatorname {Subst}\left (\int \frac {922+312 x}{-\frac {97}{8}+\frac {125 x}{4}+4 x^3} \, dx,x,-\frac {1}{4}+x\right )+\frac {8}{15} \operatorname {Subst}\left (\int \frac {922+312 x}{\left (\frac {1}{3} \left (\frac {125\ 3^{2/3}}{\sqrt [3]{873+8 \sqrt {103461}}}-\sqrt [3]{3 \left (873+8 \sqrt {103461}\right )}\right )+4 x\right ) \left (\frac {1}{9} \left (375+\frac {46875 \sqrt [3]{3}}{\left (873+8 \sqrt {103461}\right )^{2/3}}+\left (3 \left (873+8 \sqrt {103461}\right )\right )^{2/3}\right )-\frac {4 \left (125 \sqrt [3]{\frac {3}{873+8 \sqrt {103461}}}-\sqrt [3]{873+8 \sqrt {103461}}\right ) x}{3^{2/3}}+16 x^2\right )} \, dx,x,-\frac {1}{4}+x\right )\\ &=\frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x}-\frac {8}{15} \operatorname {Subst}\left (\int \frac {922+312 x}{\left (\frac {1}{3} \left (\frac {125\ 3^{2/3}}{\sqrt [3]{873+8 \sqrt {103461}}}-\sqrt [3]{3 \left (873+8 \sqrt {103461}\right )}\right )+4 x\right ) \left (\frac {1}{9} \left (375+\frac {46875 \sqrt [3]{3}}{\left (873+8 \sqrt {103461}\right )^{2/3}}+\left (3 \left (873+8 \sqrt {103461}\right )\right )^{2/3}\right )-\frac {4 \left (125 \sqrt [3]{\frac {3}{873+8 \sqrt {103461}}}-\sqrt [3]{873+8 \sqrt {103461}}\right ) x}{3^{2/3}}+16 x^2\right )} \, dx,x,-\frac {1}{4}+x\right )+\frac {8}{15} \operatorname {Subst}\left (\int \left (\frac {6 \left (873+8 \sqrt {103461}\right )^{2/3} \left (-1625 3^{2/3}+461 \sqrt [3]{873+8 \sqrt {103461}}+13 \sqrt [3]{3} \left (873+8 \sqrt {103461}\right )^{2/3}\right )}{\left (15625 \sqrt [3]{3}+\left (291\ 3^{2/3}+8 \sqrt [6]{3} \sqrt {34487}\right ) \sqrt [3]{873+8 \sqrt {103461}}-125 \left (873+8 \sqrt {103461}\right )^{2/3}\right ) \left (125\ 3^{2/3}-\sqrt [3]{3} \left (873+8 \sqrt {103461}\right )^{2/3}+12 \sqrt [3]{873+8 \sqrt {103461}} x\right )}+\frac {2 \left (873+8 \sqrt {103461}\right )^{2/3} \left (\left (126599\ 3^{2/3}+312 \sqrt [6]{3} \sqrt {34487}\right ) \sqrt [3]{873+8 \sqrt {103461}}+4875 \left (873+8 \sqrt {103461}\right )^{2/3}-\sqrt [3]{3} \left (195531+7376 \sqrt {103461}\right )+12 \sqrt [3]{873+8 \sqrt {103461}} \left (1625\ 3^{2/3}-461 \sqrt [3]{873+8 \sqrt {103461}}-13 \sqrt [3]{3} \left (873+8 \sqrt {103461}\right )^{2/3}\right ) x\right )}{\left (15625 \sqrt [3]{3}+\left (291\ 3^{2/3}+8 \sqrt [6]{3} \sqrt {34487}\right ) \sqrt [3]{873+8 \sqrt {103461}}-125 \left (873+8 \sqrt {103461}\right )^{2/3}\right ) \left (15625 \sqrt [3]{3}+\left (291\ 3^{2/3}+8 \sqrt [6]{3} \sqrt {34487}\right ) \sqrt [3]{873+8 \sqrt {103461}}+125 \left (873+8 \sqrt {103461}\right )^{2/3}+4\ 3^{2/3} \left (291\ 3^{2/3}+8 \sqrt [6]{3} \sqrt {34487}-125 \sqrt [3]{873+8 \sqrt {103461}}\right ) x+48 \left (873+8 \sqrt {103461}\right )^{2/3} x^2\right )}\right ) \, dx,x,-\frac {1}{4}+x\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.83 \begin {gather*} \frac {\log \left (8-\frac {5}{x}-\frac {3 x}{4}+x^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 25, normalized size = 1.04 \begin {gather*} \frac {\log \left (\frac {4 \, x^{3} - 3 \, x^{2} + 32 \, x - 20}{4 \, x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 25, normalized size = 1.04 \begin {gather*} \frac {\log \left (\frac {4 \, x^{3} - 3 \, x^{2} + 32 \, x - 20}{4 \, x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.08
method | result | size |
norman | \(\frac {\ln \left (\frac {4 x^{3}-3 x^{2}+32 x -20}{4 x}\right )}{x}\) | \(26\) |
risch | \(\frac {\ln \left (\frac {4 x^{3}-3 x^{2}+32 x -20}{4 x}\right )}{x}\) | \(26\) |
default | \(\frac {\ln \left (\frac {4 x^{3}-3 x^{2}+32 x -20}{x}\right )}{x}-\frac {2 \ln \relax (2)}{x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.25 \begin {gather*} -\frac {2 \, \log \relax (2) - \log \left (4 \, x^{3} - 3 \, x^{2} + 32 \, x - 20\right ) + \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.16, size = 22, normalized size = 0.92 \begin {gather*} \frac {\ln \left (\frac {x^3-\frac {3\,x^2}{4}+8\,x-5}{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 19, normalized size = 0.79 \begin {gather*} \frac {\log {\left (\frac {x^{3} - \frac {3 x^{2}}{4} + 8 x - 5}{x} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________