Optimal. Leaf size=19 \[ \frac {x}{-3+e^{-7+2 \left (x-x^3\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3+e^{-7+2 x-2 x^3} \left (1-2 x+6 x^3\right )}{9+e^{-14+4 x-4 x^3}-6 e^{-7+2 x-2 x^3}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{3}+\frac {2 e^{4 x} x \left (-1+3 x^2\right )}{3 \left (e^{2 x}-3 e^{7+2 x^3}\right )^2}-\frac {e^{2 x} \left (-1-2 x+6 x^3\right )}{3 \left (e^{2 x}-3 e^{7+2 x^3}\right )}\right ) \, dx\\ &=-\frac {x}{3}-\frac {1}{3} \int \frac {e^{2 x} \left (-1-2 x+6 x^3\right )}{e^{2 x}-3 e^{7+2 x^3}} \, dx+\frac {2}{3} \int \frac {e^{4 x} x \left (-1+3 x^2\right )}{\left (e^{2 x}-3 e^{7+2 x^3}\right )^2} \, dx\\ &=-\frac {x}{3}-\frac {1}{3} \int \left (-\frac {e^{2 x}}{e^{2 x}-3 e^{7+2 x^3}}-\frac {2 e^{2 x} x}{e^{2 x}-3 e^{7+2 x^3}}+\frac {6 e^{2 x} x^3}{e^{2 x}-3 e^{7+2 x^3}}\right ) \, dx+\frac {2}{3} \int \left (-\frac {e^{4 x} x}{\left (e^{2 x}-3 e^{7+2 x^3}\right )^2}+\frac {3 e^{4 x} x^3}{\left (e^{2 x}-3 e^{7+2 x^3}\right )^2}\right ) \, dx\\ &=-\frac {x}{3}+\frac {1}{3} \int \frac {e^{2 x}}{e^{2 x}-3 e^{7+2 x^3}} \, dx-\frac {2}{3} \int \frac {e^{4 x} x}{\left (e^{2 x}-3 e^{7+2 x^3}\right )^2} \, dx+\frac {2}{3} \int \frac {e^{2 x} x}{e^{2 x}-3 e^{7+2 x^3}} \, dx+2 \int \frac {e^{4 x} x^3}{\left (e^{2 x}-3 e^{7+2 x^3}\right )^2} \, dx-2 \int \frac {e^{2 x} x^3}{e^{2 x}-3 e^{7+2 x^3}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 30, normalized size = 1.58 \begin {gather*} \frac {e^{7+2 x^3} x}{e^{2 x}-3 e^{7+2 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 17, normalized size = 0.89 \begin {gather*} \frac {x}{e^{\left (-2 \, x^{3} + 2 \, x - 7\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 24, normalized size = 1.26 \begin {gather*} -\frac {x e^{7}}{3 \, e^{7} - e^{\left (-2 \, x^{3} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.95
method | result | size |
norman | \(\frac {x}{{\mathrm e}^{-2 x^{3}+2 x -7}-3}\) | \(18\) |
risch | \(\frac {x}{{\mathrm e}^{-2 x^{3}+2 x -7}-3}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 30, normalized size = 1.58 \begin {gather*} -\frac {x e^{\left (2 \, x^{3} + 7\right )}}{3 \, e^{\left (2 \, x^{3} + 7\right )} - e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.04, size = 19, normalized size = 1.00 \begin {gather*} \frac {x}{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-7}\,{\mathrm {e}}^{-2\,x^3}-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.74 \begin {gather*} \frac {x}{e^{- 2 x^{3} + 2 x - 7} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________