3.68.47 \(\int \frac {e^{\frac {-12+28 x+11 x^2}{12 x}} (12+11 x^2)}{12 x^2} \, dx\)

Optimal. Leaf size=27 \[ e^{\frac {2 x+x^2+\frac {1}{3} \left (-3+x-\frac {x^2}{4}\right )}{x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 2, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {12, 6706} \begin {gather*} e^{-\frac {-11 x^2-28 x+12}{12 x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((-12 + 28*x + 11*x^2)/(12*x))*(12 + 11*x^2))/(12*x^2),x]

[Out]

E^(-1/12*(12 - 28*x - 11*x^2)/x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \frac {e^{\frac {-12+28 x+11 x^2}{12 x}} \left (12+11 x^2\right )}{x^2} \, dx\\ &=e^{-\frac {12-28 x-11 x^2}{12 x}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 16, normalized size = 0.59 \begin {gather*} e^{\frac {7}{3}-\frac {1}{x}+\frac {11 x}{12}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((-12 + 28*x + 11*x^2)/(12*x))*(12 + 11*x^2))/(12*x^2),x]

[Out]

E^(7/3 - x^(-1) + (11*x)/12)

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 16, normalized size = 0.59 \begin {gather*} e^{\left (\frac {11 \, x^{2} + 28 \, x - 12}{12 \, x}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*(11*x^2+12)*exp(1/12*(11*x^2+28*x-12)/x)/x^2,x, algorithm="fricas")

[Out]

e^(1/12*(11*x^2 + 28*x - 12)/x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 11, normalized size = 0.41 \begin {gather*} e^{\left (\frac {11}{12} \, x - \frac {1}{x} + \frac {7}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*(11*x^2+12)*exp(1/12*(11*x^2+28*x-12)/x)/x^2,x, algorithm="giac")

[Out]

e^(11/12*x - 1/x + 7/3)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 17, normalized size = 0.63




method result size



gosper \({\mathrm e}^{\frac {11 x^{2}+28 x -12}{12 x}}\) \(17\)
norman \({\mathrm e}^{\frac {11 x^{2}+28 x -12}{12 x}}\) \(17\)
risch \({\mathrm e}^{\frac {11 x^{2}+28 x -12}{12 x}}\) \(17\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/12*(11*x^2+12)*exp(1/12*(11*x^2+28*x-12)/x)/x^2,x,method=_RETURNVERBOSE)

[Out]

exp(1/12*(11*x^2+28*x-12)/x)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 11, normalized size = 0.41 \begin {gather*} e^{\left (\frac {11}{12} \, x - \frac {1}{x} + \frac {7}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*(11*x^2+12)*exp(1/12*(11*x^2+28*x-12)/x)/x^2,x, algorithm="maxima")

[Out]

e^(11/12*x - 1/x + 7/3)

________________________________________________________________________________________

mupad [B]  time = 4.00, size = 13, normalized size = 0.48 \begin {gather*} {\mathrm {e}}^{\frac {11\,x}{12}}\,{\mathrm {e}}^{7/3}\,{\mathrm {e}}^{-\frac {1}{x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(((7*x)/3 + (11*x^2)/12 - 1)/x)*(11*x^2 + 12))/(12*x^2),x)

[Out]

exp((11*x)/12)*exp(7/3)*exp(-1/x)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 15, normalized size = 0.56 \begin {gather*} e^{\frac {\frac {11 x^{2}}{12} + \frac {7 x}{3} - 1}{x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*(11*x**2+12)*exp(1/12*(11*x**2+28*x-12)/x)/x**2,x)

[Out]

exp((11*x**2/12 + 7*x/3 - 1)/x)

________________________________________________________________________________________