Optimal. Leaf size=30 \[ e^{x^4 \log ^2\left (-x+\frac {\sqrt [5]{\frac {1}{x}}}{-x+x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [F] time = 3.31, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{x^4 \log ^2\left (\frac {\sqrt [5]{\frac {1}{x}}+x^2-x^3}{-x+x^2}\right )} \left (\left (-10 x^5+20 x^6-10 x^7+\sqrt [5]{\frac {1}{x}} \left (12 x^3-22 x^4\right )\right ) \log \left (\frac {\sqrt [5]{\frac {1}{x}}+x^2-x^3}{-x+x^2}\right )+\left (-20 x^5+40 x^6-20 x^7+\sqrt [5]{\frac {1}{x}} \left (-20 x^3+20 x^4\right )\right ) \log ^2\left (\frac {\sqrt [5]{\frac {1}{x}}+x^2-x^3}{-x+x^2}\right )\right )}{-5 x^2+10 x^3-5 x^4+\sqrt [5]{\frac {1}{x}} (-5+5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 35, normalized size = 1.17 \begin {gather*} e^{\left (x^{4} \log \left (-\frac {x^{4} - x^{3} - x^{\frac {4}{5}}}{x^{3} - x^{2}}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.09, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (20 x^{4}-20 x^{3}\right ) \left (\frac {1}{x}\right )^{\frac {1}{5}}-20 x^{7}+40 x^{6}-20 x^{5}\right ) \ln \left (\frac {\left (\frac {1}{x}\right )^{\frac {1}{5}}-x^{3}+x^{2}}{x^{2}-x}\right )^{2}+\left (\left (-22 x^{4}+12 x^{3}\right ) \left (\frac {1}{x}\right )^{\frac {1}{5}}-10 x^{7}+20 x^{6}-10 x^{5}\right ) \ln \left (\frac {\left (\frac {1}{x}\right )^{\frac {1}{5}}-x^{3}+x^{2}}{x^{2}-x}\right )\right ) {\mathrm e}^{x^{4} \ln \left (\frac {\left (\frac {1}{x}\right )^{\frac {1}{5}}-x^{3}+x^{2}}{x^{2}-x}\right )^{2}}}{\left (5 x -5\right ) \left (\frac {1}{x}\right )^{\frac {1}{5}}-5 x^{4}+10 x^{3}-5 x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.07, size = 193, normalized size = 6.43 \begin {gather*} e^{\left (x^{4} \log \left (-x^{\frac {16}{5}} + x^{\frac {11}{5}} + 1\right )^{2} - \frac {12}{5} \, x^{4} \log \left (-x^{\frac {16}{5}} + x^{\frac {11}{5}} + 1\right ) \log \relax (x) + \frac {36}{25} \, x^{4} \log \relax (x)^{2} - 2 \, x^{4} \log \left (-x^{\frac {16}{5}} + x^{\frac {11}{5}} + 1\right ) \log \left (x^{\frac {4}{5}} + x^{\frac {3}{5}} + x^{\frac {2}{5}} + x^{\frac {1}{5}} + 1\right ) + \frac {12}{5} \, x^{4} \log \relax (x) \log \left (x^{\frac {4}{5}} + x^{\frac {3}{5}} + x^{\frac {2}{5}} + x^{\frac {1}{5}} + 1\right ) + x^{4} \log \left (x^{\frac {4}{5}} + x^{\frac {3}{5}} + x^{\frac {2}{5}} + x^{\frac {1}{5}} + 1\right )^{2} - 2 \, x^{4} \log \left (-x^{\frac {16}{5}} + x^{\frac {11}{5}} + 1\right ) \log \left (x^{\frac {1}{5}} - 1\right ) + \frac {12}{5} \, x^{4} \log \relax (x) \log \left (x^{\frac {1}{5}} - 1\right ) + 2 \, x^{4} \log \left (x^{\frac {4}{5}} + x^{\frac {3}{5}} + x^{\frac {2}{5}} + x^{\frac {1}{5}} + 1\right ) \log \left (x^{\frac {1}{5}} - 1\right ) + x^{4} \log \left (x^{\frac {1}{5}} - 1\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{x^4\,{\ln \left (-\frac {{\left (\frac {1}{x}\right )}^{1/5}+x^2-x^3}{x-x^2}\right )}^2}\,\left ({\ln \left (-\frac {{\left (\frac {1}{x}\right )}^{1/5}+x^2-x^3}{x-x^2}\right )}^2\,\left (\left (20\,x^3-20\,x^4\right )\,{\left (\frac {1}{x}\right )}^{1/5}+20\,x^5-40\,x^6+20\,x^7\right )-\ln \left (-\frac {{\left (\frac {1}{x}\right )}^{1/5}+x^2-x^3}{x-x^2}\right )\,\left (\left (12\,x^3-22\,x^4\right )\,{\left (\frac {1}{x}\right )}^{1/5}-10\,x^5+20\,x^6-10\,x^7\right )\right )}{\left (5\,x-5\right )\,{\left (\frac {1}{x}\right )}^{1/5}-5\,x^2+10\,x^3-5\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________