Optimal. Leaf size=27 \[ x+\log (x)-\frac {\left (x+\frac {4 x}{\log (x \log (4))}\right )^2}{4 (-1+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^2+16 x^3+\left (12 x^2+4 x^3\right ) \log (x \log (4))+8 x^2 \log ^2(x \log (4))+\left (-2+4 x+x^2-4 x^3+2 x^4\right ) \log ^3(x \log (4))}{\left (-2 x+6 x^2-6 x^3+2 x^4\right ) \log ^3(x \log (4))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 x^2-16 x^3-\left (12 x^2+4 x^3\right ) \log (x \log (4))-8 x^2 \log ^2(x \log (4))-\left (-2+4 x+x^2-4 x^3+2 x^4\right ) \log ^3(x \log (4))}{x \left (2-6 x+6 x^2-2 x^3\right ) \log ^3(x \log (4))} \, dx\\ &=\int \left (\frac {-2+4 x+x^2-4 x^3+2 x^4}{2 (-1+x)^3 x}+\frac {8 x}{(-1+x)^2 \log ^3(x \log (4))}+\frac {2 x (3+x)}{(-1+x)^3 \log ^2(x \log (4))}+\frac {4 x}{(-1+x)^3 \log (x \log (4))}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-2+4 x+x^2-4 x^3+2 x^4}{(-1+x)^3 x} \, dx+2 \int \frac {x (3+x)}{(-1+x)^3 \log ^2(x \log (4))} \, dx+4 \int \frac {x}{(-1+x)^3 \log (x \log (4))} \, dx+8 \int \frac {x}{(-1+x)^2 \log ^3(x \log (4))} \, dx\\ &=\frac {1}{2} \int \left (2+\frac {1}{(-1+x)^3}+\frac {1}{(-1+x)^2}+\frac {2}{x}\right ) \, dx+2 \int \frac {x (3+x)}{(-1+x)^3 \log ^2(x \log (4))} \, dx+4 \int \frac {x}{(-1+x)^3 \log (x \log (4))} \, dx+8 \int \frac {x}{(-1+x)^2 \log ^3(x \log (4))} \, dx\\ &=-\frac {1}{4 (1-x)^2}+\frac {1}{2 (1-x)}+x+\log (x)+2 \int \frac {x (3+x)}{(-1+x)^3 \log ^2(x \log (4))} \, dx+4 \int \frac {x}{(-1+x)^3 \log (x \log (4))} \, dx+8 \int \frac {x}{(-1+x)^2 \log ^3(x \log (4))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.29, size = 62, normalized size = 2.30 \begin {gather*} \frac {1}{2} \left (-\frac {1}{2 (-1+x)^2}-\frac {1}{-1+x}+2 x+2 \log (x)-\frac {8 x^2}{(-1+x)^2 \log ^2(x \log (4))}-\frac {4 x^2}{(-1+x)^2 \log (x \log (4))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 79, normalized size = 2.93 \begin {gather*} \frac {4 \, {\left (x^{2} - 2 \, x + 1\right )} \log \left (2 \, x \log \relax (2)\right )^{3} - 8 \, x^{2} \log \left (2 \, x \log \relax (2)\right ) + {\left (4 \, x^{3} - 8 \, x^{2} + 2 \, x + 1\right )} \log \left (2 \, x \log \relax (2)\right )^{2} - 16 \, x^{2}}{4 \, {\left (x^{2} - 2 \, x + 1\right )} \log \left (2 \, x \log \relax (2)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.27, size = 125, normalized size = 4.63 \begin {gather*} x - \frac {2 \, {\left (x^{2} \log \relax (2) + x^{2} \log \left (x \log \relax (2)\right ) + 2 \, x^{2}\right )}}{x^{2} \log \relax (2)^{2} + 2 \, x^{2} \log \relax (2) \log \left (x \log \relax (2)\right ) + x^{2} \log \left (x \log \relax (2)\right )^{2} - 2 \, x \log \relax (2)^{2} - 4 \, x \log \relax (2) \log \left (x \log \relax (2)\right ) - 2 \, x \log \left (x \log \relax (2)\right )^{2} + \log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (x \log \relax (2)\right ) + \log \left (x \log \relax (2)\right )^{2}} - \frac {2 \, x - 1}{4 \, {\left (x^{2} - 2 \, x + 1\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.22, size = 70, normalized size = 2.59
method | result | size |
norman | \(\frac {\frac {\ln \left (2 x \ln \relax (2)\right )^{2}}{2}+\ln \left (2 x \ln \relax (2)\right )^{2} x^{3}-\frac {7 x^{2} \ln \left (2 x \ln \relax (2)\right )^{2}}{4}-4 x^{2}-2 x^{2} \ln \left (2 x \ln \relax (2)\right )}{\left (x -1\right )^{2} \ln \left (2 x \ln \relax (2)\right )^{2}}+\ln \relax (x )\) | \(70\) |
risch | \(\frac {4 x^{2} \ln \relax (x )+4 x^{3}-8 x \ln \relax (x )-8 x^{2}+4 \ln \relax (x )+2 x +1}{4 x^{2}-8 x +4}-\frac {2 \left (\ln \left (2 x \ln \relax (2)\right )+2\right ) x^{2}}{\left (x^{2}-2 x +1\right ) \ln \left (2 x \ln \relax (2)\right )^{2}}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 261, normalized size = 9.67 \begin {gather*} \frac {4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} x^{3} - 8 \, {\left ({\left (2 \, \log \left (\log \relax (2)\right ) + 1\right )} \log \relax (2) + \log \relax (2)^{2} + \log \left (\log \relax (2)\right )^{2} + \log \left (\log \relax (2)\right ) + 2\right )} x^{2} + {\left (4 \, x^{3} - 8 \, x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 2 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} x + \log \relax (2)^{2} + 2 \, {\left (4 \, x^{3} {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} - 4 \, x^{2} {\left (2 \, \log \relax (2) + 2 \, \log \left (\log \relax (2)\right ) + 1\right )} + 2 \, x {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} + \log \relax (2) + \log \left (\log \relax (2)\right )\right )} \log \relax (x) + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}}{4 \, {\left ({\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} x^{2} + {\left (x^{2} - 2 \, x + 1\right )} \log \relax (x)^{2} - 2 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )} x + \log \relax (2)^{2} + 2 \, {\left (x^{2} {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} - 2 \, x {\left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )} + \log \relax (2) + \log \left (\log \relax (2)\right )\right )} \log \relax (x) + 2 \, \log \relax (2) \log \left (\log \relax (2)\right ) + \log \left (\log \relax (2)\right )^{2}\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 203, normalized size = 7.52 \begin {gather*} x+\ln \relax (x)+\frac {\frac {x\,\left (5\,x-x^2\right )}{{\left (x-1\right )}^3}+\frac {2\,x^2\,{\ln \left (2\,x\,\ln \relax (2)\right )}^2\,\left (x+2\right )}{{\left (x-1\right )}^4}+\frac {2\,x\,\ln \left (2\,x\,\ln \relax (2)\right )\,\left (x^2+5\,x\right )}{{\left (x-1\right )}^4}}{\ln \left (2\,x\,\ln \relax (2)\right )}-\frac {\frac {x^3}{2}+\frac {43\,x^2}{4}+x-\frac {1}{4}}{x^4-4\,x^3+6\,x^2-4\,x+1}-\frac {\frac {4\,x^2}{{\left (x-1\right )}^2}+\frac {2\,x^2\,{\ln \left (2\,x\,\ln \relax (2)\right )}^2}{{\left (x-1\right )}^3}+\frac {x^2\,\ln \left (2\,x\,\ln \relax (2)\right )\,\left (x+3\right )}{{\left (x-1\right )}^3}}{{\ln \left (2\,x\,\ln \relax (2)\right )}^2}-\frac {\ln \left (2\,x\,\ln \relax (2)\right )\,\left (2\,x^3+4\,x^2\right )}{x^4-4\,x^3+6\,x^2-4\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.49, size = 58, normalized size = 2.15 \begin {gather*} x + \frac {1 - 2 x}{4 x^{2} - 8 x + 4} + \frac {- 2 x^{2} \log {\left (2 x \log {\relax (2 )} \right )} - 4 x^{2}}{\left (x^{2} - 2 x + 1\right ) \log {\left (2 x \log {\relax (2 )} \right )}^{2}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________