Optimal. Leaf size=22 \[ 4 \left (-\frac {e^{-e^{2 x}}}{\sqrt [4]{5}}+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2282, 12, 2194} \begin {gather*} 4 x^2-\frac {4 e^{-e^{2 x}}}{\sqrt [4]{5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 x^2+8 \int e^{2 x+\frac {1}{4} \left (-4 e^{2 x}-\log (5)\right )} \, dx\\ &=4 x^2+4 \operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt [4]{5}} \, dx,x,e^{2 x}\right )\\ &=4 x^2+\frac {4 \operatorname {Subst}\left (\int e^{-x} \, dx,x,e^{2 x}\right )}{\sqrt [4]{5}}\\ &=-\frac {4 e^{-e^{2 x}}}{\sqrt [4]{5}}+4 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 1.00 \begin {gather*} -\frac {4 e^{-e^{2 x}}}{\sqrt [4]{5}}+4 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 32, normalized size = 1.45 \begin {gather*} 4 \, {\left (x^{2} e^{\left (2 \, x\right )} - e^{\left (2 \, x - e^{\left (2 \, x\right )} - \frac {1}{4} \, \log \relax (5)\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 18, normalized size = 0.82 \begin {gather*} 4 \, x^{2} - \frac {4}{5} \cdot 5^{\frac {3}{4}} e^{\left (-e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.86
method | result | size |
risch | \(4 x^{2}-\frac {4 \,5^{\frac {3}{4}} {\mathrm e}^{-{\mathrm e}^{2 x}}}{5}\) | \(19\) |
default | \(4 x^{2}-4 \,{\mathrm e}^{-{\mathrm e}^{2 x}-\frac {\ln \relax (5)}{4}}\) | \(21\) |
norman | \(4 x^{2}-4 \,{\mathrm e}^{-{\mathrm e}^{2 x}-\frac {\ln \relax (5)}{4}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 18, normalized size = 0.82 \begin {gather*} 4 \, x^{2} - \frac {4}{5} \cdot 5^{\frac {3}{4}} e^{\left (-e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 18, normalized size = 0.82 \begin {gather*} 4\,x^2-\frac {4\,5^{3/4}\,{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.86 \begin {gather*} 4 x^{2} - \frac {4 \cdot 5^{\frac {3}{4}} e^{- e^{2 x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________