Optimal. Leaf size=28 \[ \frac {3}{8}-2 e^{\frac {5+x}{x}}-\log (x)+\frac {\log (2+x)}{\log (3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 4, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {12, 1593, 6688, 2209} \begin {gather*} -2 e^{\frac {5}{x}+1}-\log (x)+\frac {\log (x+2)}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {x^2+e^{\frac {5+x}{x}} (20+10 x) \log (3)+\left (-2 x-x^2\right ) \log (3)}{2 x^2+x^3} \, dx}{\log (3)}\\ &=\frac {\int \frac {x^2+e^{\frac {5+x}{x}} (20+10 x) \log (3)+\left (-2 x-x^2\right ) \log (3)}{x^2 (2+x)} \, dx}{\log (3)}\\ &=\frac {\int \left (\frac {1}{2+x}+\frac {10 e^{1+\frac {5}{x}} \log (3)}{x^2}-\frac {\log (3)}{x}\right ) \, dx}{\log (3)}\\ &=-\log (x)+\frac {\log (2+x)}{\log (3)}+10 \int \frac {e^{1+\frac {5}{x}}}{x^2} \, dx\\ &=-2 e^{1+\frac {5}{x}}-\log (x)+\frac {\log (2+x)}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 29, normalized size = 1.04 \begin {gather*} -2 e^{1+\frac {5}{x}}-\log (x)+\frac {\log (x \log (3)+\log (9))}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 30, normalized size = 1.07 \begin {gather*} -\frac {2 \, e^{\left (\frac {x + 5}{x}\right )} \log \relax (3) + \log \relax (3) \log \relax (x) - \log \left (x + 2\right )}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 56, normalized size = 2.00 \begin {gather*} -\frac {2 \, e^{\left (\frac {x + 5}{x}\right )} \log \relax (3) - \log \relax (3) \log \left (\frac {x + 5}{x} - 1\right ) - \log \left (\frac {2 \, {\left (x + 5\right )}}{x} + 3\right ) + \log \left (\frac {x + 5}{x} - 1\right )}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.89
method | result | size |
norman | \(-2 \,{\mathrm e}^{\frac {5+x}{x}}+\frac {\ln \left (2+x \right )}{\ln \relax (3)}-\ln \relax (x )\) | \(25\) |
risch | \(\frac {\ln \left (-x -2\right )}{\ln \relax (3)}-\ln \relax (x )-2 \,{\mathrm e}^{\frac {5+x}{x}}\) | \(27\) |
default | \(\frac {-\ln \left (\frac {5}{x}\right )+\ln \left (5+\frac {10}{x}\right )+\ln \relax (3) \ln \left (\frac {5}{x}\right )-2 \ln \relax (3) {\mathrm e}^{1+\frac {5}{x}}}{\ln \relax (3)}\) | \(44\) |
derivativedivides | \(-\frac {\ln \left (\frac {5}{x}\right )-\ln \left (5+\frac {10}{x}\right )-\ln \relax (3) \ln \left (\frac {5}{x}\right )+2 \ln \relax (3) {\mathrm e}^{1+\frac {5}{x}}}{\ln \relax (3)}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 42, normalized size = 1.50 \begin {gather*} \frac {{\left (\log \left (x + 2\right ) - \log \relax (x)\right )} \log \relax (3) - 2 \, e^{\left (\frac {5}{x} + 1\right )} \log \relax (3) - \log \relax (3) \log \left (x + 2\right ) + \log \left (x + 2\right )}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 24, normalized size = 0.86 \begin {gather*} \frac {\ln \left (x+2\right )}{\ln \relax (3)}-2\,\mathrm {e}\,{\mathrm {e}}^{5/x}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 29, normalized size = 1.04 \begin {gather*} - 2 e^{\frac {x + 5}{x}} - \log {\relax (x )} + \frac {\log {\left (x + \frac {2 + 2 \log {\relax (3 )}}{1 + \log {\relax (3 )}} \right )}}{\log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________