3.7.57 \(\int (-10-2 e^x) \, dx\)

Optimal. Leaf size=18 \[ \frac {2 x-2 x \left (e^x+5 x\right )}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 9, normalized size of antiderivative = 0.50, number of steps used = 2, number of rules used = 1, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2194} \begin {gather*} -10 x-2 e^x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[-10 - 2*E^x,x]

[Out]

-2*E^x - 10*x

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-10 x-2 \int e^x \, dx\\ &=-2 e^x-10 x\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 9, normalized size = 0.50 \begin {gather*} -2 \left (e^x+5 x\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[-10 - 2*E^x,x]

[Out]

-2*(E^x + 5*x)

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 8, normalized size = 0.44 \begin {gather*} -10 \, x - 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(x)-10,x, algorithm="fricas")

[Out]

-10*x - 2*e^x

________________________________________________________________________________________

giac [A]  time = 0.38, size = 8, normalized size = 0.44 \begin {gather*} -10 \, x - 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(x)-10,x, algorithm="giac")

[Out]

-10*x - 2*e^x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 9, normalized size = 0.50




method result size



default \(-2 \,{\mathrm e}^{x}-10 x\) \(9\)
norman \(-2 \,{\mathrm e}^{x}-10 x\) \(9\)
risch \(-2 \,{\mathrm e}^{x}-10 x\) \(9\)
derivativedivides \(-2 \,{\mathrm e}^{x}-10 \ln \left ({\mathrm e}^{x}\right )\) \(11\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-2*exp(x)-10,x,method=_RETURNVERBOSE)

[Out]

-2*exp(x)-10*x

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 8, normalized size = 0.44 \begin {gather*} -10 \, x - 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(x)-10,x, algorithm="maxima")

[Out]

-10*x - 2*e^x

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 8, normalized size = 0.44 \begin {gather*} -10\,x-2\,{\mathrm {e}}^x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(- 2*exp(x) - 10,x)

[Out]

- 10*x - 2*exp(x)

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 8, normalized size = 0.44 \begin {gather*} - 10 x - 2 e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*exp(x)-10,x)

[Out]

-10*x - 2*exp(x)

________________________________________________________________________________________