Optimal. Leaf size=29 \[ e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \left (e^2 \left (1+2 x^2\right )+25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}} \left (-8 x-4 x \log \left (25 x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \left (1+2 x^2\right )-4\ 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \left (2+\log \left (25 x^2\right )\right )\right ) \, dx\\ &=-\left (4 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \left (2+\log \left (25 x^2\right )\right ) \, dx\right )+\int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \left (1+2 x^2\right ) \, dx\\ &=-\left (4 \int \left (2\ 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}}+25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \log \left (25 x^2\right )\right ) \, dx\right )+\int \left (e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}}+2 e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x^2\right ) \, dx\\ &=2 \int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x^2 \, dx-4 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \log \left (25 x^2\right ) \, dx-8 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx+\int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \, dx\\ &=2 \int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x^2 \, dx+4 \int \frac {2 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx}{x} \, dx-8 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx-\left (4 \log \left (25 x^2\right )\right ) \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx+\int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \, dx\\ &=2 \int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x^2 \, dx-8 \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx+8 \int \frac {\int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx}{x} \, dx-\left (4 \log \left (25 x^2\right )\right ) \int 25^{\frac {4 x}{e^2}} e^{-7+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \left (x^2\right )^{\frac {4 x}{e^2}} \, dx+\int e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.43, size = 29, normalized size = 1.00 \begin {gather*} e^{-5+x^2-25^{\frac {4 x}{e^2}} \left (x^2\right )^{\frac {4 x}{e^2}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 21, normalized size = 0.72 \begin {gather*} x e^{\left (x^{2} - \left (25 \, x^{2}\right )^{4 \, x e^{\left (-2\right )}} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left (4 \, {\left (x \log \left (25 \, x^{2}\right ) + 2 \, x\right )} \left (25 \, x^{2}\right )^{4 \, x e^{\left (-2\right )}} - {\left (2 \, x^{2} + 1\right )} e^{2}\right )} e^{\left (x^{2} - \left (25 \, x^{2}\right )^{4 \, x e^{\left (-2\right )}} - 7\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 24, normalized size = 0.83
method | result | size |
risch | \(x \,{\mathrm e}^{-\left (25 x^{2}\right )^{4 x \,{\mathrm e}^{-2}}+x^{2}-5}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 26, normalized size = 0.90 \begin {gather*} x e^{\left (x^{2} - e^{\left (8 \, x e^{\left (-2\right )} \log \relax (5) + 8 \, x e^{\left (-2\right )} \log \relax (x)\right )} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 21, normalized size = 0.72 \begin {gather*} x\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{-{\left (390625\,x^8\right )}^{x\,{\mathrm {e}}^{-2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 36.83, size = 22, normalized size = 0.76 \begin {gather*} x e^{x^{2} - e^{\frac {4 x \log {\left (25 x^{2} \right )}}{e^{2}}} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________