Optimal. Leaf size=25 \[ x+\left (-2 x-e^{\frac {3 e^{25}}{x^2}} x+\log (4)+\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 80, normalized size of antiderivative = 3.20, number of steps used = 11, number of rules used = 5, integrand size = 126, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {14, 2288, 2346, 2301, 2295} \begin {gather*} e^{\frac {6 e^{25}}{x^2}} x^2+4 x^2+2 e^{\frac {3 e^{25}}{x^2}-25} x \left (2 e^{25} x-e^{25} \log (x)-e^{25} \log (4)\right )+4 x+\log ^2(x)-4 x \log (x)-x (3+\log (256))+\log (16) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{\frac {6 e^{25}}{x^2}} \left (-6 e^{25}+x^2\right )}{x}+\frac {8 x^2-3 x \left (1+\frac {4 \log (4)}{3}\right )+\log (16)+2 \log (x)-4 x \log (x)}{x}+\frac {2 e^{\frac {3 e^{25}}{x^2}} \left (-12 e^{25} x+4 x^3+6 e^{25} \log (4)-x^2 (1+\log (4))+6 e^{25} \log (x)-x^2 \log (x)\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {e^{\frac {6 e^{25}}{x^2}} \left (-6 e^{25}+x^2\right )}{x} \, dx+2 \int \frac {e^{\frac {3 e^{25}}{x^2}} \left (-12 e^{25} x+4 x^3+6 e^{25} \log (4)-x^2 (1+\log (4))+6 e^{25} \log (x)-x^2 \log (x)\right )}{x^2} \, dx+\int \frac {8 x^2-3 x \left (1+\frac {4 \log (4)}{3}\right )+\log (16)+2 \log (x)-4 x \log (x)}{x} \, dx\\ &=e^{\frac {6 e^{25}}{x^2}} x^2+2 e^{-25+\frac {3 e^{25}}{x^2}} x \left (2 e^{25} x-e^{25} \log (4)-e^{25} \log (x)\right )+\int \left (\frac {8 x^2+\log (16)-x (3+\log (256))}{x}-\frac {2 (-1+2 x) \log (x)}{x}\right ) \, dx\\ &=e^{\frac {6 e^{25}}{x^2}} x^2+2 e^{-25+\frac {3 e^{25}}{x^2}} x \left (2 e^{25} x-e^{25} \log (4)-e^{25} \log (x)\right )-2 \int \frac {(-1+2 x) \log (x)}{x} \, dx+\int \frac {8 x^2+\log (16)-x (3+\log (256))}{x} \, dx\\ &=e^{\frac {6 e^{25}}{x^2}} x^2+2 e^{-25+\frac {3 e^{25}}{x^2}} x \left (2 e^{25} x-e^{25} \log (4)-e^{25} \log (x)\right )+2 \int \frac {\log (x)}{x} \, dx-4 \int \log (x) \, dx+\int \left (-3+8 x+\frac {\log (16)}{x}-\log (256)\right ) \, dx\\ &=4 x+4 x^2+e^{\frac {6 e^{25}}{x^2}} x^2-x (3+\log (256))-4 x \log (x)+\log (16) \log (x)+\log ^2(x)+2 e^{-25+\frac {3 e^{25}}{x^2}} x \left (2 e^{25} x-e^{25} \log (4)-e^{25} \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 64, normalized size = 2.56 \begin {gather*} x \left (1+\left (2+e^{\frac {3 e^{25}}{x^2}}\right )^2 x-4 \log (4)-2 e^{\frac {3 e^{25}}{x^2}} \log (4)\right )+\left (-2 \left (2+e^{\frac {3 e^{25}}{x^2}}\right ) x+\log (16)\right ) \log (x)+\log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.48, size = 69, normalized size = 2.76 \begin {gather*} x^{2} e^{\left (\frac {6 \, e^{25}}{x^{2}}\right )} + 4 \, x^{2} + 4 \, {\left (x^{2} - x \log \relax (2)\right )} e^{\left (\frac {3 \, e^{25}}{x^{2}}\right )} - 8 \, x \log \relax (2) - 2 \, {\left (x e^{\left (\frac {3 \, e^{25}}{x^{2}}\right )} + 2 \, x - 2 \, \log \relax (2)\right )} \log \relax (x) + \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 126, normalized size = 5.04 \begin {gather*} x^{2} e^{\left (\frac {25 \, x^{2} + 6 \, e^{25}}{x^{2}} - 25\right )} + {\left (4 \, x^{2} e^{25} + 4 \, x^{2} e^{\left (\frac {25 \, x^{2} + 3 \, e^{25}}{x^{2}}\right )} - 8 \, x e^{25} \log \relax (2) - 4 \, x e^{\left (\frac {25 \, x^{2} + 3 \, e^{25}}{x^{2}}\right )} \log \relax (2) - 4 \, x e^{25} \log \relax (x) - 2 \, x e^{\left (\frac {25 \, x^{2} + 3 \, e^{25}}{x^{2}}\right )} \log \relax (x) + 4 \, e^{25} \log \relax (2) \log \relax (x) + e^{25} \log \relax (x)^{2} + x e^{25}\right )} e^{\left (-25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 79, normalized size = 3.16
method | result | size |
risch | \(\ln \relax (x )^{2}+\left (-2 \,{\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}} x -4 x \right ) \ln \relax (x )+x^{2} {\mathrm e}^{\frac {6 \,{\mathrm e}^{25}}{x^{2}}}-4 \ln \relax (2) x \,{\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}}+4 \,{\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}} x^{2}+4 \ln \relax (2) \ln \relax (x )-8 x \ln \relax (2)+4 x^{2}+x\) | \(79\) |
default | \(\frac {4 \,{\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}} x^{3}-2 \ln \relax (x ) {\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}} x^{2}-4 \ln \relax (2) {\mathrm e}^{\frac {3 \,{\mathrm e}^{25}}{x^{2}}} x^{2}}{x}+4 x^{2}-8 x \ln \relax (2)+x +4 \ln \relax (2) \ln \relax (x )+x^{2} {\mathrm e}^{\frac {6 \,{\mathrm e}^{25}}{x^{2}}}-4 x \ln \relax (x )+\ln \relax (x )^{2}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \sqrt {3} x \sqrt {-\frac {e^{25}}{x^{2}}} \Gamma \left (-\frac {1}{2}, -\frac {3 \, e^{25}}{x^{2}}\right ) \log \relax (2) - \sqrt {3} x \sqrt {-\frac {e^{25}}{x^{2}}} \Gamma \left (-\frac {1}{2}, -\frac {3 \, e^{25}}{x^{2}}\right ) - 2 \, x e^{\left (\frac {3 \, e^{25}}{x^{2}}\right )} \log \relax (x) - \frac {4 \, \sqrt {3} \sqrt {\pi } {\left (\operatorname {erf}\left (\sqrt {3} \sqrt {-\frac {e^{25}}{x^{2}}}\right ) - 1\right )} e^{25} \log \relax (2)}{x \sqrt {-\frac {e^{25}}{x^{2}}}} + 4 \, x^{2} + 6 \, {\rm Ei}\left (\frac {6 \, e^{25}}{x^{2}}\right ) e^{25} + 12 \, {\rm Ei}\left (\frac {3 \, e^{25}}{x^{2}}\right ) e^{25} - 12 \, e^{25} \Gamma \left (-1, -\frac {3 \, e^{25}}{x^{2}}\right ) - 6 \, e^{25} \Gamma \left (-1, -\frac {6 \, e^{25}}{x^{2}}\right ) - 8 \, x \log \relax (2) - 4 \, x \log \relax (x) + 4 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} + x + 2 \, \int e^{\left (\frac {3 \, e^{25}}{x^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 78, normalized size = 3.12 \begin {gather*} x+4\,x^2\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{25}}{x^2}}+x^2\,{\mathrm {e}}^{\frac {6\,{\mathrm {e}}^{25}}{x^2}}-8\,x\,\ln \relax (2)+{\ln \relax (x)}^2+4\,\ln \relax (2)\,\ln \relax (x)-4\,x\,\ln \relax (x)+4\,x^2-4\,x\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{25}}{x^2}}\,\ln \relax (2)-2\,x\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^{25}}{x^2}}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.68, size = 75, normalized size = 3.00 \begin {gather*} x^{2} e^{\frac {6 e^{25}}{x^{2}}} + 4 x^{2} - 4 x \log {\relax (x )} + x \left (1 - 8 \log {\relax (2 )}\right ) + \left (4 x^{2} - 2 x \log {\relax (x )} - 4 x \log {\relax (2 )}\right ) e^{\frac {3 e^{25}}{x^{2}}} + \log {\relax (x )}^{2} + 4 \log {\relax (2 )} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________