Optimal. Leaf size=23 \[ e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-30000 \log ^4\left (\frac {x}{5}\right )+x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} \left (4 x^4 \log \left (\frac {x}{5}\right ) \log ^3(x)+\left (-4 x^4+5 x^4 \log \left (\frac {x}{5}\right )\right ) \log ^4(x)\right )}{2500 \log ^5\left (\frac {x}{5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{\frac {-30000 \log ^4\left (\frac {x}{5}\right )+x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} \left (4 x^4 \log \left (\frac {x}{5}\right ) \log ^3(x)+\left (-4 x^4+5 x^4 \log \left (\frac {x}{5}\right )\right ) \log ^4(x)\right )}{\log ^5\left (\frac {x}{5}\right )} \, dx}{2500}\\ &=\frac {\int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^3(x) \left (-4 \log (x)+\log \left (\frac {x}{5}\right ) (4+5 \log (x))\right )}{\log ^5\left (\frac {x}{5}\right )} \, dx}{2500}\\ &=\frac {\int \left (\frac {4 e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^3(x)}{\log ^4\left (\frac {x}{5}\right )}+\frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \left (-4+5 \log \left (\frac {x}{5}\right )\right ) \log ^4(x)}{\log ^5\left (\frac {x}{5}\right )}\right ) \, dx}{2500}\\ &=\frac {\int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \left (-4+5 \log \left (\frac {x}{5}\right )\right ) \log ^4(x)}{\log ^5\left (\frac {x}{5}\right )} \, dx}{2500}+\frac {1}{625} \int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^3(x)}{\log ^4\left (\frac {x}{5}\right )} \, dx\\ &=\frac {\int \left (-\frac {4 e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^4(x)}{\log ^5\left (\frac {x}{5}\right )}+\frac {5 e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^4(x)}{\log ^4\left (\frac {x}{5}\right )}\right ) \, dx}{2500}+\frac {1}{625} \int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^3(x)}{\log ^4\left (\frac {x}{5}\right )} \, dx\\ &=\frac {1}{625} \int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^3(x)}{\log ^4\left (\frac {x}{5}\right )} \, dx-\frac {1}{625} \int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^4(x)}{\log ^5\left (\frac {x}{5}\right )} \, dx+\frac {1}{500} \int \frac {e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} x^4 \log ^4(x)}{\log ^4\left (\frac {x}{5}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 23, normalized size = 1.00 \begin {gather*} e^{-12+\frac {x^5 \log ^4(x)}{2500 \log ^4\left (\frac {x}{5}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 71, normalized size = 3.09 \begin {gather*} e^{\left (\frac {x^{5} \log \relax (5)^{4} + 4 \, x^{5} \log \relax (5)^{3} \log \left (\frac {1}{5} \, x\right ) + 6 \, x^{5} \log \relax (5)^{2} \log \left (\frac {1}{5} \, x\right )^{2} + 4 \, x^{5} \log \relax (5) \log \left (\frac {1}{5} \, x\right )^{3} + {\left (x^{5} - 30000\right )} \log \left (\frac {1}{5} \, x\right )^{4}}{2500 \, \log \left (\frac {1}{5} \, x\right )^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.05, size = 18, normalized size = 0.78 \begin {gather*} e^{\left (\frac {x^{5} \log \relax (x)^{4}}{2500 \, \log \left (\frac {1}{5} \, x\right )^{4}} - 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.68, size = 61, normalized size = 2.65
method | result | size |
risch | \({\mathrm e}^{-\frac {-x^{5} \ln \relax (x )^{4}+30000 \ln \relax (x )^{4}-120000 \ln \relax (x )^{3} \ln \relax (5)+180000 \ln \relax (x )^{2} \ln \relax (5)^{2}-120000 \ln \relax (x ) \ln \relax (5)^{3}+30000 \ln \relax (5)^{4}}{2500 \left (\ln \relax (5)-\ln \relax (x )\right )^{4}}}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 49, normalized size = 2.13 \begin {gather*} e^{\left (\frac {x^{5} \log \relax (x)^{4}}{2500 \, {\left (\log \relax (5)^{4} - 4 \, \log \relax (5)^{3} \log \relax (x) + 6 \, \log \relax (5)^{2} \log \relax (x)^{2} - 4 \, \log \relax (5) \log \relax (x)^{3} + \log \relax (x)^{4}\right )}} - 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 277, normalized size = 12.04 \begin {gather*} 5^{\frac {48\,{\ln \relax (x)}^3}{{\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4}}\,x^{\frac {48\,{\ln \relax (5)}^3}{{\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4}}\,{\mathrm {e}}^{-\frac {72\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2}{{\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4}}\,{\mathrm {e}}^{\frac {x^5\,{\ln \relax (x)}^4}{2500\,\left ({\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4\right )}}\,{\mathrm {e}}^{-\frac {12\,{\ln \relax (x)}^4}{{\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4}}\,{\mathrm {e}}^{-\frac {12\,{\ln \relax (5)}^4}{{\ln \relax (x)}^4-4\,\ln \relax (5)\,{\ln \relax (x)}^3+6\,{\ln \relax (5)}^2\,{\ln \relax (x)}^2-4\,{\ln \relax (5)}^3\,\ln \relax (x)+{\ln \relax (5)}^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 29, normalized size = 1.26 \begin {gather*} e^{\frac {4 \left (\frac {x^{5} \log {\relax (x )}^{4}}{10000} - 3 \left (\log {\relax (x )} - \log {\relax (5 )}\right )^{4}\right )}{\left (\log {\relax (x )} - \log {\relax (5 )}\right )^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________