Optimal. Leaf size=28 \[ \frac {x}{2}+\log (x)+\left (4 e^{x^2}-x\right )^2 \log ^2\left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 47, normalized size of antiderivative = 1.68, number of steps used = 12, number of rules used = 6, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 14, 2288, 43, 2304, 2305} \begin {gather*} 16 e^{2 x^2} \log ^2\left (x^2\right )+x^2 \log ^2\left (x^2\right )-8 e^{x^2} x \log ^2\left (x^2\right )+\frac {x}{2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2288
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {2+x+\left (128 e^{2 x^2}-64 e^{x^2} x+8 x^2\right ) \log \left (x^2\right )+\left (4 x^2+128 e^{2 x^2} x^2+e^{x^2} \left (-16 x-32 x^3\right )\right ) \log ^2\left (x^2\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {128 e^{2 x^2} \log \left (x^2\right ) \left (1+x^2 \log \left (x^2\right )\right )}{x}-16 e^{x^2} \log \left (x^2\right ) \left (4+\log \left (x^2\right )+2 x^2 \log \left (x^2\right )\right )+\frac {2+x+8 x^2 \log \left (x^2\right )+4 x^2 \log ^2\left (x^2\right )}{x}\right ) \, dx\\ &=\frac {1}{2} \int \frac {2+x+8 x^2 \log \left (x^2\right )+4 x^2 \log ^2\left (x^2\right )}{x} \, dx-8 \int e^{x^2} \log \left (x^2\right ) \left (4+\log \left (x^2\right )+2 x^2 \log \left (x^2\right )\right ) \, dx+64 \int \frac {e^{2 x^2} \log \left (x^2\right ) \left (1+x^2 \log \left (x^2\right )\right )}{x} \, dx\\ &=16 e^{2 x^2} \log ^2\left (x^2\right )-8 e^{x^2} x \log ^2\left (x^2\right )+\frac {1}{2} \int \left (\frac {2+x}{x}+8 x \log \left (x^2\right )+4 x \log ^2\left (x^2\right )\right ) \, dx\\ &=16 e^{2 x^2} \log ^2\left (x^2\right )-8 e^{x^2} x \log ^2\left (x^2\right )+\frac {1}{2} \int \frac {2+x}{x} \, dx+2 \int x \log ^2\left (x^2\right ) \, dx+4 \int x \log \left (x^2\right ) \, dx\\ &=-2 x^2+2 x^2 \log \left (x^2\right )+16 e^{2 x^2} \log ^2\left (x^2\right )-8 e^{x^2} x \log ^2\left (x^2\right )+x^2 \log ^2\left (x^2\right )+\frac {1}{2} \int \left (1+\frac {2}{x}\right ) \, dx-4 \int x \log \left (x^2\right ) \, dx\\ &=\frac {x}{2}+\log (x)+16 e^{2 x^2} \log ^2\left (x^2\right )-8 e^{x^2} x \log ^2\left (x^2\right )+x^2 \log ^2\left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 1.04 \begin {gather*} \frac {1}{2} \left (x+2 \log (x)+2 \left (-4 e^{x^2}+x\right )^2 \log ^2\left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 36, normalized size = 1.29 \begin {gather*} {\left (x^{2} - 8 \, x e^{\left (x^{2}\right )} + 16 \, e^{\left (2 \, x^{2}\right )}\right )} \log \left (x^{2}\right )^{2} + \frac {1}{2} \, x + \frac {1}{2} \, \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 43, normalized size = 1.54 \begin {gather*} x^{2} \log \left (x^{2}\right )^{2} - 8 \, x e^{\left (x^{2}\right )} \log \left (x^{2}\right )^{2} + 16 \, e^{\left (2 \, x^{2}\right )} \log \left (x^{2}\right )^{2} + \frac {1}{2} \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 114, normalized size = 4.07
method | result | size |
default | \(\ln \relax (x )+\frac {x}{2}+64 \,{\mathrm e}^{2 x^{2}} \ln \relax (x )^{2}+64 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) {\mathrm e}^{2 x^{2}} \ln \relax (x )+16 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )^{2} {\mathrm e}^{2 x^{2}}-32 x \,{\mathrm e}^{x^{2}} \ln \relax (x )^{2}-8 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )^{2} x \,{\mathrm e}^{x^{2}}-32 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) x \,{\mathrm e}^{x^{2}} \ln \relax (x )+x^{2} \ln \left (x^{2}\right )^{2}\) | \(114\) |
risch | \(\frac {\left (128 \,{\mathrm e}^{2 x^{2}}-64 \,{\mathrm e}^{x^{2}} x +8 x^{2}\right ) \ln \relax (x )^{2}}{2}-2 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (x^{2} \mathrm {csgn}\left (i x \right )^{2}-2 x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )+x^{2} \mathrm {csgn}\left (i x^{2}\right )^{2}-8 x \mathrm {csgn}\left (i x \right )^{2} {\mathrm e}^{x^{2}}+16 x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x^{2}}-8 x \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x^{2}}+16 \mathrm {csgn}\left (i x \right )^{2} {\mathrm e}^{2 x^{2}}-32 \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{2 x^{2}}+16 \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{2 x^{2}}\right ) \ln \relax (x )-\frac {\pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}}{4}+\pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-\frac {3 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}}{2}+\pi ^{2} x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-\frac {\pi ^{2} x^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}}{4}+\frac {x}{2}+\ln \relax (x )-4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{2 x^{2}}+16 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{2 x^{2}}-24 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} {\mathrm e}^{2 x^{2}}+16 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5} {\mathrm e}^{2 x^{2}}-4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6} {\mathrm e}^{2 x^{2}}+2 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x^{2}}-8 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x^{2}}+12 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} {\mathrm e}^{x^{2}}-8 \pi ^{2} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5} {\mathrm e}^{x^{2}}+2 \pi ^{2} x \mathrm {csgn}\left (i x^{2}\right )^{6} {\mathrm e}^{x^{2}}\) | \(546\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 54, normalized size = 1.93 \begin {gather*} 4 \, x^{2} \log \relax (x)^{2} - 32 \, x e^{\left (x^{2}\right )} \log \relax (x)^{2} + 2 \, x^{2} \log \left (x^{2}\right ) - 4 \, x^{2} \log \relax (x) + 64 \, e^{\left (2 \, x^{2}\right )} \log \relax (x)^{2} + \frac {1}{2} \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 32, normalized size = 1.14 \begin {gather*} \left (16\,{\mathrm {e}}^{2\,x^2}-8\,x\,{\mathrm {e}}^{x^2}+x^2\right )\,{\ln \left (x^2\right )}^2+\frac {x}{2}+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.46, size = 46, normalized size = 1.64 \begin {gather*} x^{2} \log {\left (x^{2} \right )}^{2} - 8 x e^{x^{2}} \log {\left (x^{2} \right )}^{2} + \frac {x}{2} + 16 e^{2 x^{2}} \log {\left (x^{2} \right )}^{2} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________