Optimal. Leaf size=29 \[ \frac {3+2 \left (5-e^{4-x^2}\right )}{x}+e^{3+x} x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 36, normalized size of antiderivative = 1.24, number of steps used = 7, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {14, 2288, 2176, 2194} \begin {gather*} -\frac {2 e^{4-x^2}}{x}+e^{x+3} (x+1)-e^{x+3}+\frac {13}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{4-x^2} \left (1+2 x^2\right )}{x^2}+\frac {-13+e^{3+x} x^2+e^{3+x} x^3}{x^2}\right ) \, dx\\ &=2 \int \frac {e^{4-x^2} \left (1+2 x^2\right )}{x^2} \, dx+\int \frac {-13+e^{3+x} x^2+e^{3+x} x^3}{x^2} \, dx\\ &=-\frac {2 e^{4-x^2}}{x}+\int \left (-\frac {13}{x^2}+e^{3+x} (1+x)\right ) \, dx\\ &=\frac {13}{x}-\frac {2 e^{4-x^2}}{x}+\int e^{3+x} (1+x) \, dx\\ &=\frac {13}{x}-\frac {2 e^{4-x^2}}{x}+e^{3+x} (1+x)-\int e^{3+x} \, dx\\ &=-e^{3+x}+\frac {13}{x}-\frac {2 e^{4-x^2}}{x}+e^{3+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 26, normalized size = 0.90 \begin {gather*} \frac {13-2 e^{4-x^2}+e^{3+x} x^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 24, normalized size = 0.83 \begin {gather*} \frac {x^{2} e^{\left (x + 3\right )} - 2 \, e^{\left (-x^{2} + 4\right )} + 13}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 24, normalized size = 0.83 \begin {gather*} \frac {x^{2} e^{\left (x + 3\right )} - 2 \, e^{\left (-x^{2} + 4\right )} + 13}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.86
method | result | size |
norman | \(\frac {13+x^{2} {\mathrm e}^{3+x}-2 \,{\mathrm e}^{-x^{2}+4}}{x}\) | \(25\) |
risch | \(\frac {13}{x}+{\mathrm e}^{3+x} x -\frac {2 \,{\mathrm e}^{-\left (x -2\right ) \left (2+x \right )}}{x}\) | \(27\) |
default | \({\mathrm e}^{x} {\mathrm e}^{3}+{\mathrm e}^{3} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )+\frac {13}{x}+2 \,{\mathrm e}^{4} \sqrt {\pi }\, \erf \relax (x )+2 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-x^{2}}}{x}-\sqrt {\pi }\, \erf \relax (x )\right )\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 48, normalized size = 1.66 \begin {gather*} 2 \, \sqrt {\pi } \operatorname {erf}\relax (x) e^{4} + {\left (x e^{3} - e^{3}\right )} e^{x} - \frac {\sqrt {x^{2}} e^{4} \Gamma \left (-\frac {1}{2}, x^{2}\right )}{x} + \frac {13}{x} + e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 24, normalized size = 0.83 \begin {gather*} x\,{\mathrm {e}}^{x+3}-\frac {2\,{\mathrm {e}}^{4-x^2}-13}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.66 \begin {gather*} x e^{x + 3} - \frac {2 e^{4 - x^{2}}}{x} + \frac {13}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________