Optimal. Leaf size=32 \[ e^{-81+x-\frac {4}{5 \left (-x+\frac {x}{x-\frac {\log ^2(2)}{16 x^4}}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 12.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{80 x^5-80 x^6+5 x \log ^2(2)}\right ) \left (256 x^{10}-2560 x^{11}+1280 x^{12}+\left (-320 x^4+128 x^5+160 x^6-160 x^7\right ) \log ^2(2)+\left (-4+5 x^2\right ) \log ^4(2)\right )}{1280 x^{10}-2560 x^{11}+1280 x^{12}+\left (160 x^6-160 x^7\right ) \log ^2(2)+5 x^2 \log ^4(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (256 x^{10}-2560 x^{11}+1280 x^{12}+\left (-320 x^4+128 x^5+160 x^6-160 x^7\right ) \log ^2(2)+\left (-4+5 x^2\right ) \log ^4(2)\right )}{5 x^2 \left (16 x^4-16 x^5+\log ^2(2)\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (256 x^{10}-2560 x^{11}+1280 x^{12}+\left (-320 x^4+128 x^5+160 x^6-160 x^7\right ) \log ^2(2)+\left (-4+5 x^2\right ) \log ^4(2)\right )}{x^2 \left (16 x^4-16 x^5+\log ^2(2)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (5 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )-\frac {4 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{x^2}-\frac {64 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (1+x+2 x^2\right )}{-16 x^4+16 x^5-\log ^2(2)}-\frac {64 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (16 x^4+\log ^2(2)+x \log ^2(2)+5 x^2 \log ^2(2)\right )}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2}\right ) \, dx\\ &=-\left (\frac {4}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{x^2} \, dx\right )-\frac {64}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (1+x+2 x^2\right )}{-16 x^4+16 x^5-\log ^2(2)} \, dx-\frac {64}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \left (16 x^4+\log ^2(2)+x \log ^2(2)+5 x^2 \log ^2(2)\right )}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2} \, dx+\int \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \, dx\\ &=-\left (\frac {4}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{x^2} \, dx\right )-\frac {64}{5} \int \left (\frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{-16 x^4+16 x^5-\log ^2(2)}+\frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x}{-16 x^4+16 x^5-\log ^2(2)}+\frac {2 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^2}{-16 x^4+16 x^5-\log ^2(2)}\right ) \, dx-\frac {64}{5} \int \left (\frac {16 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^4}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2}+\frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x \log ^2(2)}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2}+\frac {5 \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^2 \log ^2(2)}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2}+\frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \log ^2(2)}{\left (16 x^4-16 x^5+\log ^2(2)\right )^2}\right ) \, dx+\int \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \, dx\\ &=-\left (\frac {4}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{x^2} \, dx\right )-\frac {64}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{-16 x^4+16 x^5-\log ^2(2)} \, dx-\frac {64}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x}{-16 x^4+16 x^5-\log ^2(2)} \, dx-\frac {128}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^2}{-16 x^4+16 x^5-\log ^2(2)} \, dx-\frac {1024}{5} \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^4}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2} \, dx-\frac {1}{5} \left (64 \log ^2(2)\right ) \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2} \, dx-\frac {1}{5} \left (64 \log ^2(2)\right ) \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right )}{\left (16 x^4-16 x^5+\log ^2(2)\right )^2} \, dx-\left (64 \log ^2(2)\right ) \int \frac {\exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) x^2}{\left (-16 x^4+16 x^5-\log ^2(2)\right )^2} \, dx+\int \exp \left (-\frac {-6544 x^5+6560 x^6-80 x^7+\left (4-405 x+5 x^2\right ) \log ^2(2)}{5 x \left (-16 x^4+16 x^5-\log ^2(2)\right )}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 36, normalized size = 1.12 \begin {gather*} e^{-81+\frac {4}{5 x}+x-\frac {64 x^3}{80 x^4-80 x^5+5 \log ^2(2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 55, normalized size = 1.72 \begin {gather*} e^{\left (\frac {80 \, x^{7} - 6560 \, x^{6} + 6544 \, x^{5} - {\left (5 \, x^{2} - 405 \, x + 4\right )} \log \relax (2)^{2}}{5 \, {\left (16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.67, size = 159, normalized size = 4.97 \begin {gather*} e^{\left (\frac {16 \, x^{7}}{16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}} - \frac {1312 \, x^{6}}{16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}} + \frac {6544 \, x^{5}}{5 \, {\left (16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}\right )}} - \frac {x^{2} \log \relax (2)^{2}}{16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}} + \frac {81 \, x \log \relax (2)^{2}}{16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}} - \frac {4 \, \log \relax (2)^{2}}{5 \, {\left (16 \, x^{6} - 16 \, x^{5} - x \log \relax (2)^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.50, size = 62, normalized size = 1.94
method | result | size |
gosper | \({\mathrm e}^{\frac {-80 x^{7}+6560 x^{6}-6544 x^{5}+5 x^{2} \ln \relax (2)^{2}-405 x \ln \relax (2)^{2}+4 \ln \relax (2)^{2}}{5 x \left (-16 x^{5}+16 x^{4}+\ln \relax (2)^{2}\right )}}\) | \(62\) |
risch | \({\mathrm e}^{\frac {-80 x^{7}+6560 x^{6}-6544 x^{5}+5 x^{2} \ln \relax (2)^{2}-405 x \ln \relax (2)^{2}+4 \ln \relax (2)^{2}}{5 x \left (-16 x^{5}+16 x^{4}+\ln \relax (2)^{2}\right )}}\) | \(62\) |
norman | \(\frac {x \ln \relax (2)^{2} {\mathrm e}^{\frac {\left (5 x^{2}-405 x +4\right ) \ln \relax (2)^{2}-80 x^{7}+6560 x^{6}-6544 x^{5}}{5 x \ln \relax (2)^{2}-80 x^{6}+80 x^{5}}}+16 x^{5} {\mathrm e}^{\frac {\left (5 x^{2}-405 x +4\right ) \ln \relax (2)^{2}-80 x^{7}+6560 x^{6}-6544 x^{5}}{5 x \ln \relax (2)^{2}-80 x^{6}+80 x^{5}}}-16 x^{6} {\mathrm e}^{\frac {\left (5 x^{2}-405 x +4\right ) \ln \relax (2)^{2}-80 x^{7}+6560 x^{6}-6544 x^{5}}{5 x \ln \relax (2)^{2}-80 x^{6}+80 x^{5}}}}{x \left (-16 x^{5}+16 x^{4}+\ln \relax (2)^{2}\right )}\) | \(198\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 116.48, size = 33, normalized size = 1.03 \begin {gather*} e^{\left (\frac {64 \, x^{3}}{5 \, {\left (16 \, x^{5} - 16 \, x^{4} - \log \relax (2)^{2}\right )}} + x + \frac {4}{5 \, x} - 81\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.14, size = 147, normalized size = 4.59 \begin {gather*} {\mathrm {e}}^{\frac {x\,{\ln \relax (2)}^2}{-16\,x^5+16\,x^4+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{\frac {4\,{\ln \relax (2)}^2}{-80\,x^6+80\,x^5+5\,{\ln \relax (2)}^2\,x}}\,{\mathrm {e}}^{-\frac {81\,{\ln \relax (2)}^2}{-16\,x^5+16\,x^4+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{-\frac {16\,x^6}{-16\,x^5+16\,x^4+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{\frac {1312\,x^5}{-16\,x^5+16\,x^4+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{-\frac {6544\,x^4}{-80\,x^5+80\,x^4+5\,{\ln \relax (2)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.11, size = 49, normalized size = 1.53 \begin {gather*} e^{\frac {- 80 x^{7} + 6560 x^{6} - 6544 x^{5} + \left (5 x^{2} - 405 x + 4\right ) \log {\relax (2 )}^{2}}{- 80 x^{6} + 80 x^{5} + 5 x \log {\relax (2 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________