Optimal. Leaf size=28 \[ \frac {3 x}{-\log (x)+\log \left (-3+\frac {e^{256}}{3}-x+2 x^3\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-27+3 e^{256}-36 x^3+\left (27-3 e^{256}+9 x-18 x^3\right ) \log (x)+\left (-27+3 e^{256}-9 x+18 x^3\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \log ^2(x)+\left (18-2 e^{256}+6 x-12 x^3\right ) \log (x) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )+\left (-9+e^{256}-3 x+6 x^3\right ) \log ^2\left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (9 \left (1-\frac {e^{256}}{9}\right )+12 x^3+\left (-9+e^{256}-3 x+6 x^3\right ) \log (x)-\left (-9+e^{256}-3 x+6 x^3\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )\right )}{\left (9-e^{256}+3 x-6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\\ &=3 \int \frac {9 \left (1-\frac {e^{256}}{9}\right )+12 x^3+\left (-9+e^{256}-3 x+6 x^3\right ) \log (x)-\left (-9+e^{256}-3 x+6 x^3\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (9-e^{256}+3 x-6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\\ &=3 \int \left (\frac {-9+e^{256}}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {12 x^3}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}+\frac {9 \left (1-\frac {e^{256}}{9}\right ) \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}+\frac {3 x \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {6 x^3 \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {9 \left (1-\frac {e^{256}}{9}\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {3 x \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}+\frac {6 x^3 \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}\right ) \, dx\\ &=9 \int \frac {x \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-9 \int \frac {x \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-18 \int \frac {x^3 \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+18 \int \frac {x^3 \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-36 \int \frac {x^3}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {1}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\\ &=9 \int \frac {x \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-9 \int \frac {x \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-18 \int \left (\frac {\log (x)}{6 \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {\left (-9+e^{256}-3 x\right ) \log (x)}{6 \left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}\right ) \, dx+18 \int \left (\frac {\log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{6 \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}-\frac {\left (-9+e^{256}-3 x\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{6 \left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}\right ) \, dx-36 \int \left (\frac {1}{6 \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}+\frac {9-e^{256}+3 x}{6 \left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2}\right ) \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {1}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\\ &=-\left (3 \int \frac {\log (x)}{\left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\right )+3 \int \frac {\left (-9+e^{256}-3 x\right ) \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+3 \int \frac {\log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-3 \int \frac {\left (-9+e^{256}-3 x\right ) \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-6 \int \frac {1}{\left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-6 \int \frac {9-e^{256}+3 x}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+9 \int \frac {x \log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-9 \int \frac {x \log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {1}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx+\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log (x)}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx-\left (3 \left (9-e^{256}\right )\right ) \int \frac {\log \left (\frac {1}{3} \left (-9+e^{256}-3 x+6 x^3\right )\right )}{\left (-9+e^{256}-3 x+6 x^3\right ) \left (\log (3)+\log (x)-\log \left (-9+e^{256}-3 x+6 x^3\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 28, normalized size = 1.00 \begin {gather*} \frac {3 x}{-\log (3)-\log (x)+\log \left (-9+e^{256}-3 x+6 x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 25, normalized size = 0.89 \begin {gather*} \frac {3 \, x}{\log \left (2 \, x^{3} - x + \frac {1}{3} \, e^{256} - 3\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 0.93
method | result | size |
risch | \(-\frac {3 x}{\ln \relax (x )-\ln \left (\frac {{\mathrm e}^{256}}{3}+2 x^{3}-x -3\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 25, normalized size = 0.89 \begin {gather*} -\frac {3 \, x}{\log \relax (3) - \log \left (6 \, x^{3} - 3 \, x + e^{256} - 9\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.71, size = 25, normalized size = 0.89 \begin {gather*} \frac {3\,x}{\ln \left (2\,x^3-x+\frac {{\mathrm {e}}^{256}}{3}-3\right )-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 20, normalized size = 0.71 \begin {gather*} \frac {3 x}{- \log {\relax (x )} + \log {\left (2 x^{3} - x - 3 + \frac {e^{256}}{3} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________