Optimal. Leaf size=23 \[ -5+x (2+x) \log \left (\frac {e^{25} \left (5-\log ^2(x)\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10+5 x+(4+2 x) \log (x)+(-2-x) \log ^2(x)+\left (-10-10 x+(2+2 x) \log ^2(x)\right ) \log \left (\frac {5 e^{25}-e^{25} \log ^2(x)}{x}\right )}{-5+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {(2+x) \left (-5-2 \log (x)+\log ^2(x)\right )}{-5+\log ^2(x)}+2 (1+x) \left (25+\log \left (-\frac {-5+\log ^2(x)}{x}\right )\right )\right ) \, dx\\ &=2 \int (1+x) \left (25+\log \left (-\frac {-5+\log ^2(x)}{x}\right )\right ) \, dx-\int \frac {(2+x) \left (-5-2 \log (x)+\log ^2(x)\right )}{-5+\log ^2(x)} \, dx\\ &=2 \int \left (25 (1+x)+(1+x) \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right )\right ) \, dx-\int \left (2+x-\frac {2 (2+x) \log (x)}{-5+\log ^2(x)}\right ) \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 \int \frac {(2+x) \log (x)}{-5+\log ^2(x)} \, dx+2 \int (1+x) \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 \int \left (\frac {2 \log (x)}{-5+\log ^2(x)}+\frac {x \log (x)}{-5+\log ^2(x)}\right ) \, dx+2 \int \left (\log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right )+x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right )\right ) \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 \int \frac {x \log (x)}{-5+\log ^2(x)} \, dx+2 \int \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+2 \int x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+4 \int \frac {\log (x)}{-5+\log ^2(x)} \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 \int \frac {x \log (x)}{-5+\log ^2(x)} \, dx+2 \int \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+2 \int x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+4 \int \left (-\frac {1}{2 \left (\sqrt {5}-\log (x)\right )}+\frac {1}{2 \left (\sqrt {5}+\log (x)\right )}\right ) \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2-2 \int \frac {1}{\sqrt {5}-\log (x)} \, dx+2 \int \frac {1}{\sqrt {5}+\log (x)} \, dx+2 \int \frac {x \log (x)}{-5+\log ^2(x)} \, dx+2 \int \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+2 \int x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 \int \frac {x \log (x)}{-5+\log ^2(x)} \, dx+2 \int \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+2 \int x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {5}-x} \, dx,x,\log (x)\right )+2 \operatorname {Subst}\left (\int \frac {e^x}{\sqrt {5}+x} \, dx,x,\log (x)\right )\\ &=-2 x-\frac {x^2}{2}+25 (1+x)^2+2 e^{\sqrt {5}} \text {Ei}\left (-\sqrt {5}+\log (x)\right )+2 e^{-\sqrt {5}} \text {Ei}\left (\sqrt {5}+\log (x)\right )+2 \int \frac {x \log (x)}{-5+\log ^2(x)} \, dx+2 \int \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx+2 \int x \log \left (\frac {5}{x}-\frac {\log ^2(x)}{x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 19, normalized size = 0.83 \begin {gather*} x (2+x) \left (25+\log \left (-\frac {-5+\log ^2(x)}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 1.13 \begin {gather*} {\left (x^{2} + 2 \, x\right )} \log \left (-\frac {e^{25} \log \relax (x)^{2} - 5 \, e^{25}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 37, normalized size = 1.61 \begin {gather*} 25 \, x^{2} + {\left (x^{2} + 2 \, x\right )} \log \left (-\log \relax (x)^{2} + 5\right ) - {\left (x^{2} + 2 \, x\right )} \log \relax (x) + 50 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 45, normalized size = 1.96
method | result | size |
norman | \(x^{2} \ln \left (\frac {-{\mathrm e}^{25} \ln \relax (x )^{2}+5 \,{\mathrm e}^{25}}{x}\right )+2 x \ln \left (\frac {-{\mathrm e}^{25} \ln \relax (x )^{2}+5 \,{\mathrm e}^{25}}{x}\right )\) | \(45\) |
risch | \(\left (x^{2}+2 x \right ) \ln \left (\ln \relax (x )^{2}-5\right )-x^{2} \ln \relax (x )-2 x \ln \relax (x )-i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )+i \pi \,x^{2}+2 i \pi x +i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{3}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{3}}{2}-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}+i \pi x \,\mathrm {csgn}\left (i \left (\ln \relax (x )^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}-2 i \pi x \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )^{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )}{2}+i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )^{2}-5\right )}{x}\right )^{2}+25 x^{2}+50 x\) | \(323\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 37, normalized size = 1.61 \begin {gather*} 25 \, x^{2} + {\left (x^{2} + 2 \, x\right )} \log \left (-\log \relax (x)^{2} + 5\right ) - {\left (x^{2} + 2 \, x\right )} \log \relax (x) + 50 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.50, size = 23, normalized size = 1.00 \begin {gather*} x\,\ln \left (\frac {5\,{\mathrm {e}}^{25}-{\mathrm {e}}^{25}\,{\ln \relax (x)}^2}{x}\right )\,\left (x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 22, normalized size = 0.96 \begin {gather*} \left (x^{2} + 2 x\right ) \log {\left (\frac {- e^{25} \log {\relax (x )}^{2} + 5 e^{25}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________