Optimal. Leaf size=19 \[ x^6+\log \left (\frac {e^{-x^2} (-4+x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1593, 1620} \begin {gather*} x^6-x^2+\log (4-x)-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+8 x^2-2 x^3-24 x^6+6 x^7}{(-4+x) x} \, dx\\ &=\int \left (\frac {1}{-4+x}-\frac {1}{x}-2 x+6 x^5\right ) \, dx\\ &=-x^2+x^6+\log (4-x)-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} -x^2+x^6+\log (4-x)-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 17, normalized size = 0.89 \begin {gather*} x^{6} - x^{2} + \log \left (x - 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.16, size = 19, normalized size = 1.00 \begin {gather*} x^{6} - x^{2} + \log \left ({\left | x - 4 \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.95
method | result | size |
default | \(x^{6}-x^{2}-\ln \relax (x )+\ln \left (x -4\right )\) | \(18\) |
norman | \(x^{6}-x^{2}-\ln \relax (x )+\ln \left (x -4\right )\) | \(18\) |
risch | \(x^{6}-x^{2}-\ln \relax (x )+\ln \left (x -4\right )\) | \(18\) |
meijerg | \(-\ln \relax (x )+2 \ln \relax (2)-i \pi +\ln \left (-\frac {x}{4}+1\right )+\frac {512 x \left (\frac {35}{512} x^{5}+\frac {21}{64} x^{4}+\frac {105}{64} x^{3}+\frac {35}{4} x^{2}+\frac {105}{2} x +420\right )}{35}-\frac {512 x \left (\frac {3}{64} x^{4}+\frac {15}{64} x^{3}+\frac {5}{4} x^{2}+\frac {15}{2} x +60\right )}{5}-\frac {4 x \left (\frac {3 x}{4}+6\right )}{3}+8 x\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.89 \begin {gather*} x^{6} - x^{2} + \log \left (x - 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.14, size = 17, normalized size = 0.89 \begin {gather*} x^6-x^2-2\,\mathrm {atanh}\left (\frac {x}{2}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.74 \begin {gather*} x^{6} - x^{2} - \log {\relax (x )} + \log {\left (x - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________