Optimal. Leaf size=26 \[ \frac {4-e^{(24-x+\log (x))^2}}{\log \left (5+2 x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 38.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^2+e^{576-48 x+x^2+(48-2 x) \log (x)+\log ^2(x)} \left (4 x^2+\left (-240+250 x-106 x^2+100 x^3-4 x^4+\left (-10+10 x-4 x^2+4 x^3\right ) \log (x)\right ) \log \left (5+2 x^2\right )\right )}{\left (5 x+2 x^3\right ) \log ^2\left (5+2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x^2+e^{576-48 x+x^2+(48-2 x) \log (x)+\log ^2(x)} \left (4 x^2+\left (-240+250 x-106 x^2+100 x^3-4 x^4+\left (-10+10 x-4 x^2+4 x^3\right ) \log (x)\right ) \log \left (5+2 x^2\right )\right )}{x \left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )} \, dx\\ &=\int \left (-\frac {16 x}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )}-\frac {2 e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} \left (-2 x^2+120 \log \left (5+2 x^2\right )-125 x \log \left (5+2 x^2\right )+53 x^2 \log \left (5+2 x^2\right )-50 x^3 \log \left (5+2 x^2\right )+2 x^4 \log \left (5+2 x^2\right )+5 \log (x) \log \left (5+2 x^2\right )-5 x \log (x) \log \left (5+2 x^2\right )+2 x^2 \log (x) \log \left (5+2 x^2\right )-2 x^3 \log (x) \log \left (5+2 x^2\right )\right )}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} \left (-2 x^2+120 \log \left (5+2 x^2\right )-125 x \log \left (5+2 x^2\right )+53 x^2 \log \left (5+2 x^2\right )-50 x^3 \log \left (5+2 x^2\right )+2 x^4 \log \left (5+2 x^2\right )+5 \log (x) \log \left (5+2 x^2\right )-5 x \log (x) \log \left (5+2 x^2\right )+2 x^2 \log (x) \log \left (5+2 x^2\right )-2 x^3 \log (x) \log \left (5+2 x^2\right )\right )}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )} \, dx\right )-16 \int \frac {x}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )} \, dx\\ &=-\left (2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} \left (-2 x^2+\left (-5+5 x-2 x^2+2 x^3\right ) (-24+x-\log (x)) \log \left (5+2 x^2\right )\right )}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )} \, dx\right )-8 \operatorname {Subst}\left (\int \frac {1}{(5+2 x) \log ^2(5+2 x)} \, dx,x,x^2\right )\\ &=-\left (2 \int \left (-\frac {2 e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )}+\frac {e^{(-24+x)^2+\log ^2(x)} (-1+x) x^{47-2 x} (-24+x-\log (x))}{\log \left (5+2 x^2\right )}\right ) \, dx\right )-4 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,5+2 x^2\right )\\ &=-\left (2 \int \frac {e^{(-24+x)^2+\log ^2(x)} (-1+x) x^{47-2 x} (-24+x-\log (x))}{\log \left (5+2 x^2\right )} \, dx\right )+4 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (5+2 x^2\right ) \log ^2\left (5+2 x^2\right )} \, dx-4 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (5+2 x^2\right )\right )\\ &=\frac {4}{\log \left (5+2 x^2\right )}-2 \int \left (\frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x} (-24+x-\log (x))}{\log \left (5+2 x^2\right )}+\frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} (24-x+\log (x))}{\log \left (5+2 x^2\right )}\right ) \, dx+4 \int \left (\frac {i e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{2 \sqrt {5} \left (i \sqrt {5}-\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )}+\frac {i e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{2 \sqrt {5} \left (i \sqrt {5}+\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )}\right ) \, dx\\ &=\frac {4}{\log \left (5+2 x^2\right )}-2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x} (-24+x-\log (x))}{\log \left (5+2 x^2\right )} \, dx-2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} (24-x+\log (x))}{\log \left (5+2 x^2\right )} \, dx+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}-\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}+\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}\\ &=\frac {4}{\log \left (5+2 x^2\right )}-2 \int \left (\frac {24 e^{(-24+x)^2+\log ^2(x)} x^{47-2 x}}{\log \left (5+2 x^2\right )}-\frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x}}{\log \left (5+2 x^2\right )}+\frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} \log (x)}{\log \left (5+2 x^2\right )}\right ) \, dx-2 \int \left (-\frac {24 e^{(-24+x)^2+\log ^2(x)} x^{48-2 x}}{\log \left (5+2 x^2\right )}+\frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\log \left (5+2 x^2\right )}-\frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x} \log (x)}{\log \left (5+2 x^2\right )}\right ) \, dx+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}-\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}+\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}\\ &=\frac {4}{\log \left (5+2 x^2\right )}+2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x}}{\log \left (5+2 x^2\right )} \, dx-2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\log \left (5+2 x^2\right )} \, dx-2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x} \log (x)}{\log \left (5+2 x^2\right )} \, dx+2 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x} \log (x)}{\log \left (5+2 x^2\right )} \, dx-48 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{47-2 x}}{\log \left (5+2 x^2\right )} \, dx+48 \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{48-2 x}}{\log \left (5+2 x^2\right )} \, dx+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}-\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}+\frac {(2 i) \int \frac {e^{(-24+x)^2+\log ^2(x)} x^{49-2 x}}{\left (i \sqrt {5}+\sqrt {2} x\right ) \log ^2\left (5+2 x^2\right )} \, dx}{\sqrt {5}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 34, normalized size = 1.31 \begin {gather*} \frac {4-e^{(-24+x)^2+\log ^2(x)} x^{48-2 x}}{\log \left (5+2 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 34, normalized size = 1.31 \begin {gather*} -\frac {e^{\left (x^{2} - 2 \, {\left (x - 24\right )} \log \relax (x) + \log \relax (x)^{2} - 48 \, x + 576\right )} - 4}{\log \left (2 \, x^{2} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 36, normalized size = 1.38 \begin {gather*} -\frac {e^{\left (x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2} - 48 \, x + 48 \, \log \relax (x) + 576\right )} - 4}{\log \left (2 \, x^{2} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 46, normalized size = 1.77
method | result | size |
risch | \(\frac {4}{\ln \left (2 x^{2}+5\right )}-\frac {x^{-2 x +48} {\mathrm e}^{\ln \relax (x )^{2}+576+x^{2}-48 x}}{\ln \left (2 x^{2}+5\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 46, normalized size = 1.77 \begin {gather*} -\frac {x^{48} e^{\left (x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2} - 48 \, x + 576\right )}}{\log \left (2 \, x^{2} + 5\right )} + \frac {4}{\log \left (2 \, x^{2} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 50, normalized size = 1.92 \begin {gather*} \frac {4}{\ln \left (2\,x^2+5\right )}-\frac {x^{48}\,{\mathrm {e}}^{-48\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{576}\,{\mathrm {e}}^{{\ln \relax (x)}^2}}{x^{2\,x}\,\ln \left (2\,x^2+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 41, normalized size = 1.58 \begin {gather*} - \frac {e^{x^{2} - 48 x + \left (48 - 2 x\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 576}}{\log {\left (2 x^{2} + 5 \right )}} + \frac {4}{\log {\left (2 x^{2} + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________