Optimal. Leaf size=17 \[ \frac {1}{\sqrt [35]{e} \left (5-e^x\right )}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2282, 12, 893} \begin {gather*} x+\frac {1}{\sqrt [35]{e} \left (5-e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 893
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {25 \sqrt [35]{e}+\left (1-10 \sqrt [35]{e}\right ) x+\sqrt [35]{e} x^2}{\sqrt [35]{e} (5-x)^2 x} \, dx,x,e^x\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {25 \sqrt [35]{e}+\left (1-10 \sqrt [35]{e}\right ) x+\sqrt [35]{e} x^2}{(5-x)^2 x} \, dx,x,e^x\right )}{\sqrt [35]{e}}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{(-5+x)^2}+\frac {\sqrt [35]{e}}{x}\right ) \, dx,x,e^x\right )}{\sqrt [35]{e}}\\ &=\frac {1}{\sqrt [35]{e} \left (5-e^x\right )}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 1.00 \begin {gather*} \frac {1}{\sqrt [35]{e} \left (5-e^x\right )}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 28, normalized size = 1.65 \begin {gather*} \frac {5 \, x e^{\frac {1}{35}} - x e^{\left (x + \frac {1}{35}\right )} + 1}{5 \, e^{\frac {1}{35}} - e^{\left (x + \frac {1}{35}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 12, normalized size = 0.71 \begin {gather*} x - \frac {e^{\left (-\frac {1}{35}\right )}}{e^{x} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 13, normalized size = 0.76
method | result | size |
risch | \(x -\frac {{\mathrm e}^{-\frac {1}{35}}}{{\mathrm e}^{x}-5}\) | \(13\) |
derivativedivides | \({\mathrm e}^{-\frac {1}{35}} \left ({\mathrm e}^{\frac {1}{35}} \ln \left ({\mathrm e}^{x}\right )-\frac {1}{{\mathrm e}^{x}-5}\right )\) | \(21\) |
default | \({\mathrm e}^{-\frac {1}{35}} \left ({\mathrm e}^{\frac {1}{35}} \ln \left ({\mathrm e}^{x}\right )-\frac {1}{{\mathrm e}^{x}-5}\right )\) | \(21\) |
norman | \(\frac {{\mathrm e}^{x} x -5 x -{\mathrm e}^{-\frac {1}{35}}}{{\mathrm e}^{x}-5}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 15, normalized size = 0.88 \begin {gather*} x + \frac {1}{5 \, e^{\frac {1}{35}} - e^{\left (x + \frac {1}{35}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 15, normalized size = 0.88 \begin {gather*} x-\frac {1}{{\mathrm {e}}^{x+\frac {1}{35}}-5\,{\mathrm {e}}^{1/35}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 1.00 \begin {gather*} x - \frac {1}{e^{\frac {1}{35}} e^{x} - 5 e^{\frac {1}{35}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________