Optimal. Leaf size=30 \[ -5-e^{-x+\frac {25 \log ^2(3)}{(4-x)^2}}+x+\log \left (\frac {3 x}{2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-64-16 x+36 x^2-11 x^3+x^4+e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{16-8 x+x^2}} \left (-64 x+48 x^2-12 x^3+x^4+50 x \log ^2(3)\right )}{-64 x+48 x^2-12 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64+16 x-36 x^2+11 x^3-x^4-e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{16-8 x+x^2}} \left (-64 x+48 x^2-12 x^3+x^4+50 x \log ^2(3)\right )}{x \left (64-48 x+12 x^2-x^3\right )} \, dx\\ &=\int \left (-\frac {16}{(-4+x)^3}-\frac {64}{(-4+x)^3 x}+\frac {36 x}{(-4+x)^3}-\frac {11 x^2}{(-4+x)^3}+\frac {x^3}{(-4+x)^3}+\frac {e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}} \left (-48 x+12 x^2-x^3+2 \left (32-25 \log ^2(3)\right )\right )}{(4-x)^3}\right ) \, dx\\ &=\frac {8}{(4-x)^2}-11 \int \frac {x^2}{(-4+x)^3} \, dx+36 \int \frac {x}{(-4+x)^3} \, dx-64 \int \frac {1}{(-4+x)^3 x} \, dx+\int \frac {x^3}{(-4+x)^3} \, dx+\int \frac {e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}} \left (-48 x+12 x^2-x^3+2 \left (32-25 \log ^2(3)\right )\right )}{(4-x)^3} \, dx\\ &=\frac {8}{(4-x)^2}-\frac {9 x^2}{2 (4-x)^2}-11 \int \left (\frac {16}{(-4+x)^3}+\frac {8}{(-4+x)^2}+\frac {1}{-4+x}\right ) \, dx-64 \int \left (\frac {1}{4 (-4+x)^3}-\frac {1}{16 (-4+x)^2}+\frac {1}{64 (-4+x)}-\frac {1}{64 x}\right ) \, dx+\int \left (1+\frac {64}{(-4+x)^3}+\frac {48}{(-4+x)^2}+\frac {12}{-4+x}\right ) \, dx+\int \left (e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}}+\frac {50 e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}} \log ^2(3)}{(-4+x)^3}\right ) \, dx\\ &=\frac {72}{(4-x)^2}-\frac {36}{4-x}+x-\frac {9 x^2}{2 (4-x)^2}+\log (x)+\left (50 \log ^2(3)\right ) \int \frac {e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}}}{(-4+x)^3} \, dx+\int e^{\frac {-16 x+8 x^2-x^3+25 \log ^2(3)}{(-4+x)^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 23, normalized size = 0.77 \begin {gather*} -e^{-x+\frac {25 \log ^2(3)}{(-4+x)^2}}+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 37, normalized size = 1.23 \begin {gather*} x - e^{\left (-\frac {x^{3} - 8 \, x^{2} - 25 \, \log \relax (3)^{2} + 16 \, x}{x^{2} - 8 \, x + 16}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 56, normalized size = 1.87 \begin {gather*} x - e^{\left (\frac {25}{16} \, \log \relax (3)^{2} - \frac {25 \, x^{2} \log \relax (3)^{2} + 16 \, x^{3} - 200 \, x \log \relax (3)^{2} - 128 \, x^{2} + 256 \, x}{16 \, {\left (x^{2} - 8 \, x + 16\right )}}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 34, normalized size = 1.13
method | result | size |
risch | \(x +\ln \relax (x )-{\mathrm e}^{\frac {25 \ln \relax (3)^{2}-x^{3}+8 x^{2}-16 x}{\left (x -4\right )^{2}}}\) | \(34\) |
norman | \(\frac {x^{3}-48 x +8 x \,{\mathrm e}^{\frac {25 \ln \relax (3)^{2}-x^{3}+8 x^{2}-16 x}{x^{2}-8 x +16}}-{\mathrm e}^{\frac {25 \ln \relax (3)^{2}-x^{3}+8 x^{2}-16 x}{x^{2}-8 x +16}} x^{2}-16 \,{\mathrm e}^{\frac {25 \ln \relax (3)^{2}-x^{3}+8 x^{2}-16 x}{x^{2}-8 x +16}}+128}{\left (x -4\right )^{2}}+\ln \relax (x )\) | \(124\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 101, normalized size = 3.37 \begin {gather*} x - \frac {16 \, {\left (3 \, x - 10\right )}}{x^{2} - 8 \, x + 16} - \frac {36 \, {\left (x - 2\right )}}{x^{2} - 8 \, x + 16} + \frac {88 \, {\left (x - 3\right )}}{x^{2} - 8 \, x + 16} - \frac {4 \, {\left (x - 6\right )}}{x^{2} - 8 \, x + 16} + \frac {8}{x^{2} - 8 \, x + 16} - e^{\left (-x + \frac {25 \, \log \relax (3)^{2}}{x^{2} - 8 \, x + 16}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.49, size = 69, normalized size = 2.30 \begin {gather*} x+\ln \relax (x)-{\mathrm {e}}^{-\frac {x^3}{x^2-8\,x+16}}\,{\mathrm {e}}^{\frac {8\,x^2}{x^2-8\,x+16}}\,{\mathrm {e}}^{-\frac {16\,x}{x^2-8\,x+16}}\,{\mathrm {e}}^{\frac {25\,{\ln \relax (3)}^2}{x^2-8\,x+16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 32, normalized size = 1.07 \begin {gather*} x - e^{\frac {- x^{3} + 8 x^{2} - 16 x + 25 \log {\relax (3 )}^{2}}{x^{2} - 8 x + 16}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________