Optimal. Leaf size=30 \[ -3+\frac {5 x}{4+x-\frac {e^{4 (4-x) x^2}}{\log \left (\frac {1}{x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 93.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^{16 x^2-4 x^3}+e^{16 x^2-4 x^3} \left (-5+160 x^2-60 x^3\right ) \log \left (\frac {1}{x}\right )+20 \log ^2\left (\frac {1}{x}\right )}{e^{32 x^2-8 x^3}+e^{16 x^2-4 x^3} (-8-2 x) \log \left (\frac {1}{x}\right )+\left (16+8 x+x^2\right ) \log ^2\left (\frac {1}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{8 x^3} \left (5 e^{16 x^2-4 x^3}+e^{16 x^2-4 x^3} \left (-5+160 x^2-60 x^3\right ) \log \left (\frac {1}{x}\right )+20 \log ^2\left (\frac {1}{x}\right )\right )}{\left (e^{16 x^2}-4 e^{4 x^3} \log \left (\frac {1}{x}\right )-e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\int \left (-5 e^{8 x^3-4 x^2 (4+x)} \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )+\frac {5 e^{8 x^3} (4+x) \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )}-\frac {5 e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (-4-x+x \log \left (\frac {1}{x}\right )-128 x^2 \log \left (\frac {1}{x}\right )+16 x^3 \log \left (\frac {1}{x}\right )+12 x^4 \log \left (\frac {1}{x}\right )\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}\right ) \, dx\\ &=-\left (5 \int e^{8 x^3-4 x^2 (4+x)} \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right ) \, dx\right )+5 \int \frac {e^{8 x^3} (4+x) \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )} \, dx-5 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (-4-x+x \log \left (\frac {1}{x}\right )-128 x^2 \log \left (\frac {1}{x}\right )+16 x^3 \log \left (\frac {1}{x}\right )+12 x^4 \log \left (\frac {1}{x}\right )\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\frac {5 e^{8 x^3-4 x^2 (4+x)} \left (8 x^2 \log \left (\frac {1}{x}\right )-3 x^3 \log \left (\frac {1}{x}\right )\right )}{5 x^2-2 x (4+x)}+5 \int \frac {e^{8 x^3} (4+x) \log \left (\frac {1}{x}\right ) \left (1-\left (1-32 x^2+12 x^3\right ) \log \left (\frac {1}{x}\right )\right )}{e^{32 x^2}-e^{4 x^2 (4+x)} (4+x) \log \left (\frac {1}{x}\right )} \, dx-5 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (-4-x+x \left (1-128 x+16 x^2+12 x^3\right ) \log \left (\frac {1}{x}\right )\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\frac {5 e^{8 x^3-4 x^2 (4+x)} \left (8 x^2 \log \left (\frac {1}{x}\right )-3 x^3 \log \left (\frac {1}{x}\right )\right )}{5 x^2-2 x (4+x)}-5 \int \left (-\frac {4 e^{8 x^3} \log \left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}-\frac {e^{8 x^3} x \log \left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}+\frac {e^{8 x^3} x \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}-\frac {128 e^{8 x^3} x^2 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}+\frac {16 e^{8 x^3} x^3 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}+\frac {12 e^{8 x^3} x^4 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2}\right ) \, dx+5 \int \left (\frac {4 e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )}+\frac {e^{8 x^3} x \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )}\right ) \, dx\\ &=\frac {5 e^{8 x^3-4 x^2 (4+x)} \left (8 x^2 \log \left (\frac {1}{x}\right )-3 x^3 \log \left (\frac {1}{x}\right )\right )}{5 x^2-2 x (4+x)}+5 \int \frac {e^{8 x^3} x \log \left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx-5 \int \frac {e^{8 x^3} x \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx+5 \int \frac {e^{8 x^3} x \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )} \, dx+20 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx+20 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (-1+\log \left (\frac {1}{x}\right )-32 x^2 \log \left (\frac {1}{x}\right )+12 x^3 \log \left (\frac {1}{x}\right )\right )}{-e^{32 x^2}+4 e^{4 x^2 (4+x)} \log \left (\frac {1}{x}\right )+e^{4 x^2 (4+x)} x \log \left (\frac {1}{x}\right )} \, dx-60 \int \frac {e^{8 x^3} x^4 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx-80 \int \frac {e^{8 x^3} x^3 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx+640 \int \frac {e^{8 x^3} x^2 \log ^2\left (\frac {1}{x}\right )}{\left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )+e^{4 x^3} x \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\frac {5 e^{8 x^3-4 x^2 (4+x)} \left (8 x^2 \log \left (\frac {1}{x}\right )-3 x^3 \log \left (\frac {1}{x}\right )\right )}{5 x^2-2 x (4+x)}+5 \int \frac {e^{8 x^3} x \log \left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx-5 \int \frac {e^{8 x^3} x \log ^2\left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx+5 \int \frac {e^{8 x^3} x \log \left (\frac {1}{x}\right ) \left (1-\left (1-32 x^2+12 x^3\right ) \log \left (\frac {1}{x}\right )\right )}{e^{32 x^2}-e^{4 x^2 (4+x)} (4+x) \log \left (\frac {1}{x}\right )} \, dx+20 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx+20 \int \frac {e^{8 x^3} \log \left (\frac {1}{x}\right ) \left (1-\left (1-32 x^2+12 x^3\right ) \log \left (\frac {1}{x}\right )\right )}{e^{32 x^2}-e^{4 x^2 (4+x)} (4+x) \log \left (\frac {1}{x}\right )} \, dx-60 \int \frac {e^{8 x^3} x^4 \log ^2\left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx-80 \int \frac {e^{8 x^3} x^3 \log ^2\left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx+640 \int \frac {e^{8 x^3} x^2 \log ^2\left (\frac {1}{x}\right )}{\left (e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 51, normalized size = 1.70 \begin {gather*} \frac {5 \left (-e^{16 x^2}+4 e^{4 x^3} \log \left (\frac {1}{x}\right )\right )}{e^{16 x^2}-e^{4 x^3} (4+x) \log \left (\frac {1}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 46, normalized size = 1.53 \begin {gather*} \frac {5 \, {\left (e^{\left (-4 \, x^{3} + 16 \, x^{2}\right )} - 4 \, \log \left (\frac {1}{x}\right )\right )}}{{\left (x + 4\right )} \log \left (\frac {1}{x}\right ) - e^{\left (-4 \, x^{3} + 16 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 28, normalized size = 0.93 \begin {gather*} \frac {5 \, x \log \relax (x)}{x \log \relax (x) + e^{\left (-4 \, x^{3} + 16 \, x^{2}\right )} + 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 46, normalized size = 1.53
method | result | size |
risch | \(-\frac {20}{4+x}-\frac {5 \,{\mathrm e}^{-4 \left (x -4\right ) x^{2}} x}{\left (4+x \right ) \left (x \ln \relax (x )+{\mathrm e}^{-4 \left (x -4\right ) x^{2}}+4 \ln \relax (x )\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 40, normalized size = 1.33 \begin {gather*} -\frac {5 \, {\left (4 \, e^{\left (4 \, x^{3}\right )} \log \relax (x) + e^{\left (16 \, x^{2}\right )}\right )}}{{\left (x + 4\right )} e^{\left (4 \, x^{3}\right )} \log \relax (x) + e^{\left (16 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {20\,{\ln \left (\frac {1}{x}\right )}^2-{\mathrm {e}}^{16\,x^2-4\,x^3}\,\left (60\,x^3-160\,x^2+5\right )\,\ln \left (\frac {1}{x}\right )+5\,{\mathrm {e}}^{16\,x^2-4\,x^3}}{\left (x^2+8\,x+16\right )\,{\ln \left (\frac {1}{x}\right )}^2-{\mathrm {e}}^{16\,x^2-4\,x^3}\,\left (2\,x+8\right )\,\ln \left (\frac {1}{x}\right )+{\mathrm {e}}^{32\,x^2-8\,x^3}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 34, normalized size = 1.13 \begin {gather*} - \frac {5 x \log {\left (\frac {1}{x} \right )}}{- x \log {\left (\frac {1}{x} \right )} + e^{- 4 x^{3} + 16 x^{2}} - 4 \log {\left (\frac {1}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________