Optimal. Leaf size=23 \[ \log \left (\log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+e^x \left (x+x^2\right )+\left (1+e^x (1+x)\right ) \log (2 x)+\left (2+3 x+e^x (2+3 x)+\left (1+e^x\right ) \log (2 x)\right ) \log \left (x+e^x x\right )}{\left (x^2+e^x x^2+\left (x+e^x x\right ) \log (2 x)\right ) \log \left (x+e^x x\right ) \log \left (\frac {1}{5} \left (3 x^3+6 x^2 \log (2 x)+3 x \log ^2(2 x)\right ) \log \left (x+e^x x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+e^x \left (x+x^2\right )+\left (1+e^x (1+x)\right ) \log (2 x)+\left (2+3 x+e^x (2+3 x)+\left (1+e^x\right ) \log (2 x)\right ) \log \left (x+e^x x\right )}{\left (1+e^x\right ) x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx\\ &=\int \left (\frac {1}{\left (-1-e^x\right ) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {x+x^2+\log (2 x)+x \log (2 x)+2 \log \left (\left (1+e^x\right ) x\right )+3 x \log \left (\left (1+e^x\right ) x\right )+\log (2 x) \log \left (\left (1+e^x\right ) x\right )}{x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}\right ) \, dx\\ &=\int \frac {1}{\left (-1-e^x\right ) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {x+x^2+\log (2 x)+x \log (2 x)+2 \log \left (\left (1+e^x\right ) x\right )+3 x \log \left (\left (1+e^x\right ) x\right )+\log (2 x) \log \left (\left (1+e^x\right ) x\right )}{x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx\\ &=\int \frac {1}{\left (-1-e^x\right ) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {x (1+x)+(2+3 x) \log \left (\left (1+e^x\right ) x\right )+\log (2 x) \left (1+x+\log \left (\left (1+e^x\right ) x\right )\right )}{x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx\\ &=\int \left (\frac {3}{(x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {2}{x (x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {\log (2 x)}{x (x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {1}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {x}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {\log (2 x)}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}+\frac {\log (2 x)}{x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )}\right ) \, dx+\int \frac {1}{\left (-1-e^x\right ) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx\\ &=2 \int \frac {1}{x (x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+3 \int \frac {1}{(x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {\log (2 x)}{x (x+\log (2 x)) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {1}{\left (-1-e^x\right ) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {1}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {x}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {\log (2 x)}{(x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx+\int \frac {\log (2 x)}{x (x+\log (2 x)) \log \left (x+e^x x\right ) \log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (x+e^x x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 23, normalized size = 1.00 \begin {gather*} \log \left (\log \left (\frac {3}{5} x (x+\log (2 x))^2 \log \left (\left (1+e^x\right ) x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 32, normalized size = 1.39 \begin {gather*} \log \left (\log \left (\frac {3}{5} \, {\left (x^{3} + 2 \, x^{2} \log \left (2 \, x\right ) + x \log \left (2 \, x\right )^{2}\right )} \log \left (x e^{x} + x\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.72, size = 116, normalized size = 5.04 \begin {gather*} \log \left (-\log \relax (5) + \log \left (3 \, x^{2} \log \relax (x) + 6 \, x \log \relax (2) \log \relax (x) + 3 \, \log \relax (2)^{2} \log \relax (x) + 6 \, x \log \relax (x)^{2} + 6 \, \log \relax (2) \log \relax (x)^{2} + 3 \, \log \relax (x)^{3} + 3 \, x^{2} \log \left (e^{x} + 1\right ) + 6 \, x \log \relax (2) \log \left (e^{x} + 1\right ) + 3 \, \log \relax (2)^{2} \log \left (e^{x} + 1\right ) + 6 \, x \log \relax (x) \log \left (e^{x} + 1\right ) + 6 \, \log \relax (2) \log \relax (x) \log \left (e^{x} + 1\right ) + 3 \, \log \relax (x)^{2} \log \left (e^{x} + 1\right )\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (\left ({\mathrm e}^{x}+1\right ) \ln \left (2 x \right )+\left (3 x +2\right ) {\mathrm e}^{x}+3 x +2\right ) \ln \left ({\mathrm e}^{x} x +x \right )+\left (\left (x +1\right ) {\mathrm e}^{x}+1\right ) \ln \left (2 x \right )+\left (x^{2}+x \right ) {\mathrm e}^{x}+x}{\left (\left ({\mathrm e}^{x} x +x \right ) \ln \left (2 x \right )+{\mathrm e}^{x} x^{2}+x^{2}\right ) \ln \left ({\mathrm e}^{x} x +x \right ) \ln \left (\frac {\left (3 x \ln \left (2 x \right )^{2}+6 x^{2} \ln \left (2 x \right )+3 x^{3}\right ) \ln \left ({\mathrm e}^{x} x +x \right )}{5}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 28, normalized size = 1.22 \begin {gather*} \log \left (-\log \relax (5) + \log \relax (3) + 2 \, \log \left (x + \log \relax (2) + \log \relax (x)\right ) + \log \relax (x) + \log \left (\log \relax (x) + \log \left (e^{x} + 1\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.78, size = 35, normalized size = 1.52 \begin {gather*} \ln \left (\ln \left (\frac {\ln \left (x+x\,{\mathrm {e}}^x\right )\,\left (3\,x^3+6\,x^2\,\ln \left (2\,x\right )+3\,x\,{\ln \left (2\,x\right )}^2\right )}{5}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 70.60, size = 41, normalized size = 1.78 \begin {gather*} \log {\left (\log {\left (\left (\frac {3 x^{3}}{5} + \frac {6 x^{2} \log {\left (2 x \right )}}{5} + \frac {3 x \log {\left (2 x \right )}^{2}}{5}\right ) \log {\left (x e^{x} + x \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________