3.66.92 \(\int \frac {-4+4 \log (x)+(-e^x+e^x \log (x)) \log (3 x)+(-6 e^x x+e^x \log (x)+(-6 e^x x^2+e^x x \log (x)) \log (3 x)) \log (\frac {-6 x+\log (x)}{x})}{-96 x^2+16 x \log (x)+(-48 e^x x^2+8 e^x x \log (x)) \log (3 x)+(-6 e^{2 x} x^2+e^{2 x} x \log (x)) \log ^2(3 x)} \, dx\)

Optimal. Leaf size=25 \[ -20+\frac {\log \left (-6+\frac {\log (x)}{x}\right )}{-4-e^x \log (3 x)} \]

________________________________________________________________________________________

Rubi [F]  time = 10.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+4 \log (x)+\left (-e^x+e^x \log (x)\right ) \log (3 x)+\left (-6 e^x x+e^x \log (x)+\left (-6 e^x x^2+e^x x \log (x)\right ) \log (3 x)\right ) \log \left (\frac {-6 x+\log (x)}{x}\right )}{-96 x^2+16 x \log (x)+\left (-48 e^x x^2+8 e^x x \log (x)\right ) \log (3 x)+\left (-6 e^{2 x} x^2+e^{2 x} x \log (x)\right ) \log ^2(3 x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-4 + 4*Log[x] + (-E^x + E^x*Log[x])*Log[3*x] + (-6*E^x*x + E^x*Log[x] + (-6*E^x*x^2 + E^x*x*Log[x])*Log[3
*x])*Log[(-6*x + Log[x])/x])/(-96*x^2 + 16*x*Log[x] + (-48*E^x*x^2 + 8*E^x*x*Log[x])*Log[3*x] + (-6*E^(2*x)*x^
2 + E^(2*x)*x*Log[x])*Log[3*x]^2),x]

[Out]

Defer[Int][1/(x*(6*x - Log[x])*(4 + E^x*Log[3*x])), x] - Defer[Int][Log[x]/(x*(6*x - Log[x])*(4 + E^x*Log[3*x]
)), x] - 4*Defer[Int][Log[-6 + Log[x]/x]/(4 + E^x*Log[3*x])^2, x] - 4*Defer[Int][Log[-6 + Log[x]/x]/(x*Log[3*x
]*(4 + E^x*Log[3*x])^2), x] + 6*Defer[Int][(x*Log[-6 + Log[x]/x])/((6*x - Log[x])*(4 + E^x*Log[3*x])), x] - De
fer[Int][(Log[x]*Log[-6 + Log[x]/x])/((6*x - Log[x])*(4 + E^x*Log[3*x])), x] + 6*Defer[Int][Log[-6 + Log[x]/x]
/((6*x - Log[x])*Log[3*x]*(4 + E^x*Log[3*x])), x] - Defer[Int][(Log[x]*Log[-6 + Log[x]/x])/(x*(6*x - Log[x])*L
og[3*x]*(4 + E^x*Log[3*x])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4-4 \log (x)-\left (-e^x+e^x \log (x)\right ) \log (3 x)-\left (-6 e^x x+e^x \log (x)+\left (-6 e^x x^2+e^x x \log (x)\right ) \log (3 x)\right ) \log \left (\frac {-6 x+\log (x)}{x}\right )}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )^2} \, dx\\ &=\int \frac {4-4 \log (x)-e^x (-1+\log (x)) \log (3 x)+e^x (6 x-\log (x)) (1+x \log (3 x)) \log \left (-6+\frac {\log (x)}{x}\right )}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )^2} \, dx\\ &=\int \left (-\frac {4 (1+x \log (3 x)) \log \left (-6+\frac {\log (x)}{x}\right )}{x \log (3 x) \left (4+e^x \log (3 x)\right )^2}+\frac {\log (3 x)-\log (x) \log (3 x)+6 x \log \left (-6+\frac {\log (x)}{x}\right )-\log (x) \log \left (-6+\frac {\log (x)}{x}\right )+6 x^2 \log (3 x) \log \left (-6+\frac {\log (x)}{x}\right )-x \log (x) \log (3 x) \log \left (-6+\frac {\log (x)}{x}\right )}{x (6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )}\right ) \, dx\\ &=-\left (4 \int \frac {(1+x \log (3 x)) \log \left (-6+\frac {\log (x)}{x}\right )}{x \log (3 x) \left (4+e^x \log (3 x)\right )^2} \, dx\right )+\int \frac {\log (3 x)-\log (x) \log (3 x)+6 x \log \left (-6+\frac {\log (x)}{x}\right )-\log (x) \log \left (-6+\frac {\log (x)}{x}\right )+6 x^2 \log (3 x) \log \left (-6+\frac {\log (x)}{x}\right )-x \log (x) \log (3 x) \log \left (-6+\frac {\log (x)}{x}\right )}{x (6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )} \, dx\\ &=-\left (4 \int \left (\frac {\log \left (-6+\frac {\log (x)}{x}\right )}{\left (4+e^x \log (3 x)\right )^2}+\frac {\log \left (-6+\frac {\log (x)}{x}\right )}{x \log (3 x) \left (4+e^x \log (3 x)\right )^2}\right ) \, dx\right )+\int \left (\frac {1}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )}-\frac {\log (x)}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )}+\frac {6 x \log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \left (4+e^x \log (3 x)\right )}-\frac {\log (x) \log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \left (4+e^x \log (3 x)\right )}+\frac {6 \log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )}-\frac {\log (x) \log \left (-6+\frac {\log (x)}{x}\right )}{x (6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log \left (-6+\frac {\log (x)}{x}\right )}{\left (4+e^x \log (3 x)\right )^2} \, dx\right )-4 \int \frac {\log \left (-6+\frac {\log (x)}{x}\right )}{x \log (3 x) \left (4+e^x \log (3 x)\right )^2} \, dx+6 \int \frac {x \log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \left (4+e^x \log (3 x)\right )} \, dx+6 \int \frac {\log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )} \, dx+\int \frac {1}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )} \, dx-\int \frac {\log (x)}{x (6 x-\log (x)) \left (4+e^x \log (3 x)\right )} \, dx-\int \frac {\log (x) \log \left (-6+\frac {\log (x)}{x}\right )}{(6 x-\log (x)) \left (4+e^x \log (3 x)\right )} \, dx-\int \frac {\log (x) \log \left (-6+\frac {\log (x)}{x}\right )}{x (6 x-\log (x)) \log (3 x) \left (4+e^x \log (3 x)\right )} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 23, normalized size = 0.92 \begin {gather*} -\frac {\log \left (-6+\frac {\log (x)}{x}\right )}{4+e^x \log (3 x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-4 + 4*Log[x] + (-E^x + E^x*Log[x])*Log[3*x] + (-6*E^x*x + E^x*Log[x] + (-6*E^x*x^2 + E^x*x*Log[x])
*Log[3*x])*Log[(-6*x + Log[x])/x])/(-96*x^2 + 16*x*Log[x] + (-48*E^x*x^2 + 8*E^x*x*Log[x])*Log[3*x] + (-6*E^(2
*x)*x^2 + E^(2*x)*x*Log[x])*Log[3*x]^2),x]

[Out]

-(Log[-6 + Log[x]/x]/(4 + E^x*Log[3*x]))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 30, normalized size = 1.20 \begin {gather*} -\frac {\log \left (-\frac {6 \, x - \log \relax (x)}{x}\right )}{e^{x} \log \relax (3) + e^{x} \log \relax (x) + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x*exp(x)*log(x)-6*exp(x)*x^2)*log(3*x)+exp(x)*log(x)-6*exp(x)*x)*log((log(x)-6*x)/x)+(exp(x)*log(
x)-exp(x))*log(3*x)+4*log(x)-4)/((x*exp(x)^2*log(x)-6*exp(x)^2*x^2)*log(3*x)^2+(8*x*exp(x)*log(x)-48*exp(x)*x^
2)*log(3*x)+16*x*log(x)-96*x^2),x, algorithm="fricas")

[Out]

-log(-(6*x - log(x))/x)/(e^x*log(3) + e^x*log(x) + 4)

________________________________________________________________________________________

giac [A]  time = 3.29, size = 27, normalized size = 1.08 \begin {gather*} \frac {\log \relax (x) - \log \left (-6 \, x + \log \relax (x)\right )}{e^{x} \log \relax (3) + e^{x} \log \relax (x) + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x*exp(x)*log(x)-6*exp(x)*x^2)*log(3*x)+exp(x)*log(x)-6*exp(x)*x)*log((log(x)-6*x)/x)+(exp(x)*log(
x)-exp(x))*log(3*x)+4*log(x)-4)/((x*exp(x)^2*log(x)-6*exp(x)^2*x^2)*log(3*x)^2+(8*x*exp(x)*log(x)-48*exp(x)*x^
2)*log(3*x)+16*x*log(x)-96*x^2),x, algorithm="giac")

[Out]

(log(x) - log(-6*x + log(x)))/(e^x*log(3) + e^x*log(x) + 4)

________________________________________________________________________________________

maple [C]  time = 0.40, size = 207, normalized size = 8.28




method result size



risch \(\frac {2 i \ln \left (-\frac {\ln \relax (x )}{6}+x \right )}{-2 i \ln \relax (3) {\mathrm e}^{x}-2 i {\mathrm e}^{x} \ln \relax (x )-8 i}-\frac {-i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\frac {\ln \relax (x )}{6}-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\ln \relax (x )}{6}-x \right )}{x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\ln \relax (x )}{6}-x \right )}{x}\right )^{2}-2 i \pi \mathrm {csgn}\left (\frac {i \left (\frac {\ln \relax (x )}{6}-x \right )}{x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (\frac {\ln \relax (x )}{6}-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\ln \relax (x )}{6}-x \right )}{x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \left (\frac {\ln \relax (x )}{6}-x \right )}{x}\right )^{3}+2 i \pi +2 \ln \relax (3)+2 \ln \relax (2)-2 \ln \relax (x )}{8+2 \ln \relax (3) {\mathrm e}^{x}+2 \,{\mathrm e}^{x} \ln \relax (x )}\) \(207\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((x*exp(x)*ln(x)-6*exp(x)*x^2)*ln(3*x)+exp(x)*ln(x)-6*exp(x)*x)*ln((ln(x)-6*x)/x)+(exp(x)*ln(x)-exp(x))*l
n(3*x)+4*ln(x)-4)/((x*exp(x)^2*ln(x)-6*exp(x)^2*x^2)*ln(3*x)^2+(8*x*exp(x)*ln(x)-48*exp(x)*x^2)*ln(3*x)+16*x*l
n(x)-96*x^2),x,method=_RETURNVERBOSE)

[Out]

2*I/(-2*I*ln(3)*exp(x)-2*I*exp(x)*ln(x)-8*I)*ln(-1/6*ln(x)+x)-(-I*Pi*csgn(I/x)*csgn(I*(1/6*ln(x)-x))*csgn(I*(1
/6*ln(x)-x)/x)+I*Pi*csgn(I/x)*csgn(I*(1/6*ln(x)-x)/x)^2-2*I*Pi*csgn(I*(1/6*ln(x)-x)/x)^2-I*Pi*csgn(I*(1/6*ln(x
)-x))*csgn(I*(1/6*ln(x)-x)/x)^2-I*Pi*csgn(I*(1/6*ln(x)-x)/x)^3+2*I*Pi+2*ln(3)+2*ln(2)-2*ln(x))/(8+2*ln(3)*exp(
x)+2*exp(x)*ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.64, size = 25, normalized size = 1.00 \begin {gather*} \frac {\log \relax (x) - \log \left (-6 \, x + \log \relax (x)\right )}{{\left (\log \relax (3) + \log \relax (x)\right )} e^{x} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x*exp(x)*log(x)-6*exp(x)*x^2)*log(3*x)+exp(x)*log(x)-6*exp(x)*x)*log((log(x)-6*x)/x)+(exp(x)*log(
x)-exp(x))*log(3*x)+4*log(x)-4)/((x*exp(x)^2*log(x)-6*exp(x)^2*x^2)*log(3*x)^2+(8*x*exp(x)*log(x)-48*exp(x)*x^
2)*log(3*x)+16*x*log(x)-96*x^2),x, algorithm="maxima")

[Out]

(log(x) - log(-6*x + log(x)))/((log(3) + log(x))*e^x + 4)

________________________________________________________________________________________

mupad [B]  time = 4.45, size = 27, normalized size = 1.08 \begin {gather*} -\frac {\ln \left (-\frac {6\,x-\ln \relax (x)}{x}\right )}{\ln \left (3\,x\right )\,{\mathrm {e}}^x+4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(3*x)*(exp(x) - exp(x)*log(x)) - 4*log(x) + log(-(6*x - log(x))/x)*(log(3*x)*(6*x^2*exp(x) - x*exp(x)*
log(x)) - exp(x)*log(x) + 6*x*exp(x)) + 4)/(log(3*x)*(48*x^2*exp(x) - 8*x*exp(x)*log(x)) - 16*x*log(x) + log(3
*x)^2*(6*x^2*exp(2*x) - x*exp(2*x)*log(x)) + 96*x^2),x)

[Out]

-log(-(6*x - log(x))/x)/(log(3*x)*exp(x) + 4)

________________________________________________________________________________________

sympy [A]  time = 0.59, size = 22, normalized size = 0.88 \begin {gather*} - \frac {\log {\left (\frac {- 6 x + \log {\relax (x )}}{x} \right )}}{\left (\log {\relax (x )} + \log {\relax (3 )}\right ) e^{x} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x*exp(x)*ln(x)-6*exp(x)*x**2)*ln(3*x)+exp(x)*ln(x)-6*exp(x)*x)*ln((ln(x)-6*x)/x)+(exp(x)*ln(x)-ex
p(x))*ln(3*x)+4*ln(x)-4)/((x*exp(x)**2*ln(x)-6*exp(x)**2*x**2)*ln(3*x)**2+(8*x*exp(x)*ln(x)-48*exp(x)*x**2)*ln
(3*x)+16*x*ln(x)-96*x**2),x)

[Out]

-log((-6*x + log(x))/x)/((log(x) + log(3))*exp(x) + 4)

________________________________________________________________________________________