Optimal. Leaf size=36 \[ 3+\log \left (\frac {5-x^2 \left (-\frac {3-e^{\frac {4 x}{\log (x)}}}{x}+x\right )^2}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-4-6 x^2+3 x^4\right ) \log ^2(x)+e^{\frac {8 x}{\log (x)}} \left (-8 x+8 x \log (x)-\log ^2(x)\right )+e^{\frac {4 x}{\log (x)}} \left (24 x-8 x^3+\left (-24 x+8 x^3\right ) \log (x)+\left (6+2 x^2\right ) \log ^2(x)\right )}{e^{\frac {8 x}{\log (x)}} x \log ^2(x)+e^{\frac {4 x}{\log (x)}} \left (-6 x+2 x^3\right ) \log ^2(x)+\left (4 x-6 x^3+x^5\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-4-6 x^2+3 x^4\right ) \log ^2(x)+e^{\frac {8 x}{\log (x)}} \left (-8 x+8 x \log (x)-\log ^2(x)\right )+e^{\frac {4 x}{\log (x)}} \left (24 x-8 x^3+\left (-24 x+8 x^3\right ) \log (x)+\left (6+2 x^2\right ) \log ^2(x)\right )}{x \left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {-8 x+8 x \log (x)-\log ^2(x)}{x \log ^2(x)}-\frac {4 \left (-8+6 e^{\frac {4 x}{\log (x)}}+12 x^2-2 e^{\frac {4 x}{\log (x)}} x^2-2 x^4+8 \log (x)-6 e^{\frac {4 x}{\log (x)}} \log (x)-12 x^2 \log (x)+2 e^{\frac {4 x}{\log (x)}} x^2 \log (x)+2 x^4 \log (x)+3 x \log ^2(x)-e^{\frac {4 x}{\log (x)}} x \log ^2(x)-x^3 \log ^2(x)\right )}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}\right ) \, dx\\ &=-\left (4 \int \frac {-8+6 e^{\frac {4 x}{\log (x)}}+12 x^2-2 e^{\frac {4 x}{\log (x)}} x^2-2 x^4+8 \log (x)-6 e^{\frac {4 x}{\log (x)}} \log (x)-12 x^2 \log (x)+2 e^{\frac {4 x}{\log (x)}} x^2 \log (x)+2 x^4 \log (x)+3 x \log ^2(x)-e^{\frac {4 x}{\log (x)}} x \log ^2(x)-x^3 \log ^2(x)}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx\right )+\int \frac {-8 x+8 x \log (x)-\log ^2(x)}{x \log ^2(x)} \, dx\\ &=-\left (4 \int \frac {-2 \left (4-6 x^2+x^4+e^{\frac {4 x}{\log (x)}} \left (-3+x^2\right )\right )+2 \left (4-6 x^2+x^4+e^{\frac {4 x}{\log (x)}} \left (-3+x^2\right )\right ) \log (x)-x \left (-3+e^{\frac {4 x}{\log (x)}}+x^2\right ) \log ^2(x)}{\left (4+e^{\frac {8 x}{\log (x)}}-6 x^2+x^4+2 e^{\frac {4 x}{\log (x)}} \left (-3+x^2\right )\right ) \log ^2(x)} \, dx\right )+\int \left (-\frac {1}{x}-\frac {8}{\log ^2(x)}+\frac {8}{\log (x)}\right ) \, dx\\ &=-\log (x)-4 \int \left (\frac {3 x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4}-\frac {e^{\frac {4 x}{\log (x)}} x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4}-\frac {x^3}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4}-\frac {8}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}+\frac {6 e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}+\frac {12 x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}-\frac {2 e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}-\frac {2 x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)}+\frac {8}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)}-\frac {6 e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)}-\frac {12 x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)}+\frac {2 e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)}+\frac {2 x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)}\right ) \, dx-8 \int \frac {1}{\log ^2(x)} \, dx+8 \int \frac {1}{\log (x)} \, dx\\ &=\frac {8 x}{\log (x)}-\log (x)+8 \text {li}(x)+4 \int \frac {e^{\frac {4 x}{\log (x)}} x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx+4 \int \frac {x^3}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx+8 \int \frac {e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+8 \int \frac {x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx-8 \int \frac {1}{\log (x)} \, dx-8 \int \frac {e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-8 \int \frac {x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-12 \int \frac {x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx-24 \int \frac {e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+24 \int \frac {e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx+32 \int \frac {1}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx-32 \int \frac {1}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-48 \int \frac {x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+48 \int \frac {x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx\\ &=\frac {8 x}{\log (x)}-\log (x)+4 \int \frac {e^{\frac {4 x}{\log (x)}} x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx+4 \int \frac {x^3}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx+8 \int \frac {e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+8 \int \frac {x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx-8 \int \frac {e^{\frac {4 x}{\log (x)}} x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-8 \int \frac {x^4}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-12 \int \frac {x}{4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4} \, dx-24 \int \frac {e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+24 \int \frac {e^{\frac {4 x}{\log (x)}}}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx+32 \int \frac {1}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx-32 \int \frac {1}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx-48 \int \frac {x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log ^2(x)} \, dx+48 \int \frac {x^2}{\left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 50, normalized size = 1.39 \begin {gather*} -\log (x)+\log \left (4-6 e^{\frac {4 x}{\log (x)}}+e^{\frac {8 x}{\log (x)}}-6 x^2+2 e^{\frac {4 x}{\log (x)}} x^2+x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 39, normalized size = 1.08 \begin {gather*} \log \left (x^{4} - 6 \, x^{2} + 2 \, {\left (x^{2} - 3\right )} e^{\left (\frac {4 \, x}{\log \relax (x)}\right )} + e^{\left (\frac {8 \, x}{\log \relax (x)}\right )} + 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 41, normalized size = 1.14
method | result | size |
risch | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{\frac {8 x}{\ln \relax (x )}}+\left (2 x^{2}-6\right ) {\mathrm e}^{\frac {4 x}{\ln \relax (x )}}+x^{4}-6 x^{2}+4\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 39, normalized size = 1.08 \begin {gather*} \log \left (x^{4} - 6 \, x^{2} + 2 \, {\left (x^{2} - 3\right )} e^{\left (\frac {4 \, x}{\log \relax (x)}\right )} + e^{\left (\frac {8 \, x}{\log \relax (x)}\right )} + 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 47, normalized size = 1.31 \begin {gather*} \ln \left ({\mathrm {e}}^{\frac {8\,x}{\ln \relax (x)}}-6\,{\mathrm {e}}^{\frac {4\,x}{\ln \relax (x)}}+2\,x^2\,{\mathrm {e}}^{\frac {4\,x}{\ln \relax (x)}}-6\,x^2+x^4+4\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 37, normalized size = 1.03 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{4} - 6 x^{2} + \left (2 x^{2} - 6\right ) e^{\frac {4 x}{\log {\relax (x )}}} + e^{\frac {8 x}{\log {\relax (x )}}} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________