Optimal. Leaf size=28 \[ \frac {-5+x}{2 x-\left (x-x \log ^2\left (x^2 \log (x)\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (10-10 x+x^2\right ) \log (x)+\left (20 x-4 x^2+\left (40 x-8 x^2\right ) \log (x)\right ) \log \left (x^2 \log (x)\right )+\left (20 x-2 x^2\right ) \log (x) \log ^2\left (x^2 \log (x)\right )+\left (-20 x+4 x^2+\left (-40 x+8 x^2\right ) \log (x)\right ) \log ^3\left (x^2 \log (x)\right )+\left (-10 x+x^2\right ) \log (x) \log ^4\left (x^2 \log (x)\right )}{\left (4 x^2-4 x^3+x^4\right ) \log (x)+\left (8 x^3-4 x^4\right ) \log (x) \log ^2\left (x^2 \log (x)\right )+\left (-4 x^3+6 x^4\right ) \log (x) \log ^4\left (x^2 \log (x)\right )-4 x^4 \log (x) \log ^6\left (x^2 \log (x)\right )+x^4 \log (x) \log ^8\left (x^2 \log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (-5+x) x \log \left (x^2 \log (x)\right ) \left (-1+\log ^2\left (x^2 \log (x)\right )\right )+\log (x) \left (10-10 x+x^2-8 (-5+x) x \log \left (x^2 \log (x)\right )-2 (-10+x) x \log ^2\left (x^2 \log (x)\right )+8 (-5+x) x \log ^3\left (x^2 \log (x)\right )+(-10+x) x \log ^4\left (x^2 \log (x)\right )\right )}{x^2 \log (x) \left (2-x+2 x \log ^2\left (x^2 \log (x)\right )-x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx\\ &=\int \left (\frac {2 (-5+x) \left (\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )\right )}{x^2 \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {-10+x}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )}\right ) \, dx\\ &=2 \int \frac {(-5+x) \left (\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )\right )}{x^2 \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx+\int \frac {-10+x}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx\\ &=2 \int \left (-\frac {5 \left (\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )\right )}{x^2 \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}\right ) \, dx+\int \left (-\frac {10}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )}+\frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )}\right ) \, dx\\ &=2 \int \frac {\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-10 \int \frac {\log (x)-2 x \log \left (x^2 \log (x)\right )-4 x \log (x) \log \left (x^2 \log (x)\right )+2 x \log ^3\left (x^2 \log (x)\right )+4 x \log (x) \log ^3\left (x^2 \log (x)\right )}{x^2 \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-10 \int \frac {1}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx+\int \frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx\\ &=2 \int \left (\frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}-\frac {4 \log \left (x^2 \log (x)\right )}{\left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}-\frac {2 \log \left (x^2 \log (x)\right )}{\log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {4 \log ^3\left (x^2 \log (x)\right )}{\left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {2 \log ^3\left (x^2 \log (x)\right )}{\log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}\right ) \, dx-10 \int \frac {1}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx-10 \int \left (\frac {1}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}-\frac {4 \log \left (x^2 \log (x)\right )}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}-\frac {2 \log \left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {4 \log ^3\left (x^2 \log (x)\right )}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}+\frac {2 \log ^3\left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2}\right ) \, dx+\int \frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx\\ &=2 \int \frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-4 \int \frac {\log \left (x^2 \log (x)\right )}{\log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx+4 \int \frac {\log ^3\left (x^2 \log (x)\right )}{\log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-8 \int \frac {\log \left (x^2 \log (x)\right )}{\left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx+8 \int \frac {\log ^3\left (x^2 \log (x)\right )}{\left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-10 \int \frac {1}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-10 \int \frac {1}{x^2 \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx+20 \int \frac {\log \left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-20 \int \frac {\log ^3\left (x^2 \log (x)\right )}{x \log (x) \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx+40 \int \frac {\log \left (x^2 \log (x)\right )}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx-40 \int \frac {\log ^3\left (x^2 \log (x)\right )}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )^2} \, dx+\int \frac {1}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 37, normalized size = 1.32 \begin {gather*} \frac {5-x}{x \left (-2+x-2 x \log ^2\left (x^2 \log (x)\right )+x \log ^4\left (x^2 \log (x)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 41, normalized size = 1.46 \begin {gather*} -\frac {x - 5}{x^{2} \log \left (x^{2} \log \relax (x)\right )^{4} - 2 \, x^{2} \log \left (x^{2} \log \relax (x)\right )^{2} + x^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 143.90, size = 99, normalized size = 3.54 \begin {gather*} -\frac {x - 5}{16 \, x^{2} \log \relax (x)^{4} + 32 \, x^{2} \log \relax (x)^{3} \log \left (\log \relax (x)\right ) + 24 \, x^{2} \log \relax (x)^{2} \log \left (\log \relax (x)\right )^{2} + 8 \, x^{2} \log \relax (x) \log \left (\log \relax (x)\right )^{3} + x^{2} \log \left (\log \relax (x)\right )^{4} - 8 \, x^{2} \log \relax (x)^{2} - 8 \, x^{2} \log \relax (x) \log \left (\log \relax (x)\right ) - 2 \, x^{2} \log \left (\log \relax (x)\right )^{2} + x^{2} - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (x^{2}-10 x \right ) \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{4}+\left (\left (8 x^{2}-40 x \right ) \ln \relax (x )+4 x^{2}-20 x \right ) \ln \left (x^{2} \ln \relax (x )\right )^{3}+\left (-2 x^{2}+20 x \right ) \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{2}+\left (\left (-8 x^{2}+40 x \right ) \ln \relax (x )-4 x^{2}+20 x \right ) \ln \left (x^{2} \ln \relax (x )\right )+\left (x^{2}-10 x +10\right ) \ln \relax (x )}{x^{4} \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{8}-4 x^{4} \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{6}+\left (6 x^{4}-4 x^{3}\right ) \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{4}+\left (-4 x^{4}+8 x^{3}\right ) \ln \relax (x ) \ln \left (x^{2} \ln \relax (x )\right )^{2}+\left (x^{4}-4 x^{3}+4 x^{2}\right ) \ln \relax (x )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 97, normalized size = 3.46 \begin {gather*} -\frac {x - 5}{16 \, x^{2} \log \relax (x)^{4} + 8 \, x^{2} \log \relax (x) \log \left (\log \relax (x)\right )^{3} + x^{2} \log \left (\log \relax (x)\right )^{4} - 8 \, x^{2} \log \relax (x)^{2} + 2 \, {\left (12 \, x^{2} \log \relax (x)^{2} - x^{2}\right )} \log \left (\log \relax (x)\right )^{2} + x^{2} + 8 \, {\left (4 \, x^{2} \log \relax (x)^{3} - x^{2} \log \relax (x)\right )} \log \left (\log \relax (x)\right ) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {-\ln \relax (x)\,\left (10\,x-x^2\right )\,{\ln \left (x^2\,\ln \relax (x)\right )}^4+\left (4\,x^2-\ln \relax (x)\,\left (40\,x-8\,x^2\right )-20\,x\right )\,{\ln \left (x^2\,\ln \relax (x)\right )}^3+\ln \relax (x)\,\left (20\,x-2\,x^2\right )\,{\ln \left (x^2\,\ln \relax (x)\right )}^2+\left (20\,x+\ln \relax (x)\,\left (40\,x-8\,x^2\right )-4\,x^2\right )\,\ln \left (x^2\,\ln \relax (x)\right )+\ln \relax (x)\,\left (x^2-10\,x+10\right )}{\ln \relax (x)\,\left (x^4-4\,x^3+4\,x^2\right )-4\,x^4\,{\ln \left (x^2\,\ln \relax (x)\right )}^6\,\ln \relax (x)+x^4\,{\ln \left (x^2\,\ln \relax (x)\right )}^8\,\ln \relax (x)+{\ln \left (x^2\,\ln \relax (x)\right )}^2\,\ln \relax (x)\,\left (8\,x^3-4\,x^4\right )-{\ln \left (x^2\,\ln \relax (x)\right )}^4\,\ln \relax (x)\,\left (4\,x^3-6\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 37, normalized size = 1.32 \begin {gather*} \frac {5 - x}{x^{2} \log {\left (x^{2} \log {\relax (x )} \right )}^{4} - 2 x^{2} \log {\left (x^{2} \log {\relax (x )} \right )}^{2} + x^{2} - 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________