Optimal. Leaf size=24 \[ \frac {e^{e^x} \left (4+\frac {5 x^2}{4}\right )}{(2+x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^x} \left (-32-16 x-10 x^2-5 x^3+\left (-16 x+20 x^2+5 x^3+e^x \left (32 x+16 x^2+10 x^3+5 x^4\right )\right ) \log (x)\right )}{\left (16 x+16 x^2+4 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^x} \left (-32-16 x-10 x^2-5 x^3+\left (-16 x+20 x^2+5 x^3+e^x \left (32 x+16 x^2+10 x^3+5 x^4\right )\right ) \log (x)\right )}{x \left (16+16 x+4 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {e^{e^x} \left (-32-16 x-10 x^2-5 x^3+\left (-16 x+20 x^2+5 x^3+e^x \left (32 x+16 x^2+10 x^3+5 x^4\right )\right ) \log (x)\right )}{4 x (2+x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{4} \int \frac {e^{e^x} \left (-32-16 x-10 x^2-5 x^3+\left (-16 x+20 x^2+5 x^3+e^x \left (32 x+16 x^2+10 x^3+5 x^4\right )\right ) \log (x)\right )}{x (2+x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{4} \int \left (-\frac {16 e^{e^x}}{(2+x)^2 \log ^2(x)}-\frac {32 e^{e^x}}{x (2+x)^2 \log ^2(x)}-\frac {10 e^{e^x} x}{(2+x)^2 \log ^2(x)}-\frac {5 e^{e^x} x^2}{(2+x)^2 \log ^2(x)}-\frac {16 e^{e^x}}{(2+x)^2 \log (x)}+\frac {20 e^{e^x} x}{(2+x)^2 \log (x)}+\frac {5 e^{e^x} x^2}{(2+x)^2 \log (x)}+\frac {e^{e^x+x} \left (16+5 x^2\right )}{(2+x) \log (x)}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{e^x+x} \left (16+5 x^2\right )}{(2+x) \log (x)} \, dx-\frac {5}{4} \int \frac {e^{e^x} x^2}{(2+x)^2 \log ^2(x)} \, dx+\frac {5}{4} \int \frac {e^{e^x} x^2}{(2+x)^2 \log (x)} \, dx-\frac {5}{2} \int \frac {e^{e^x} x}{(2+x)^2 \log ^2(x)} \, dx-4 \int \frac {e^{e^x}}{(2+x)^2 \log ^2(x)} \, dx-4 \int \frac {e^{e^x}}{(2+x)^2 \log (x)} \, dx+5 \int \frac {e^{e^x} x}{(2+x)^2 \log (x)} \, dx-8 \int \frac {e^{e^x}}{x (2+x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{4} \int \left (-\frac {10 e^{e^x+x}}{\log (x)}+\frac {5 e^{e^x+x} x}{\log (x)}+\frac {36 e^{e^x+x}}{(2+x) \log (x)}\right ) \, dx-\frac {5}{4} \int \left (\frac {e^{e^x}}{\log ^2(x)}+\frac {4 e^{e^x}}{(2+x)^2 \log ^2(x)}-\frac {4 e^{e^x}}{(2+x) \log ^2(x)}\right ) \, dx+\frac {5}{4} \int \left (\frac {e^{e^x}}{\log (x)}+\frac {4 e^{e^x}}{(2+x)^2 \log (x)}-\frac {4 e^{e^x}}{(2+x) \log (x)}\right ) \, dx-\frac {5}{2} \int \left (-\frac {2 e^{e^x}}{(2+x)^2 \log ^2(x)}+\frac {e^{e^x}}{(2+x) \log ^2(x)}\right ) \, dx-4 \int \frac {e^{e^x}}{(2+x)^2 \log ^2(x)} \, dx-4 \int \frac {e^{e^x}}{(2+x)^2 \log (x)} \, dx+5 \int \left (-\frac {2 e^{e^x}}{(2+x)^2 \log (x)}+\frac {e^{e^x}}{(2+x) \log (x)}\right ) \, dx-8 \int \left (\frac {e^{e^x}}{4 x \log ^2(x)}-\frac {e^{e^x}}{2 (2+x)^2 \log ^2(x)}-\frac {e^{e^x}}{4 (2+x) \log ^2(x)}\right ) \, dx\\ &=-\left (\frac {5}{4} \int \frac {e^{e^x}}{\log ^2(x)} \, dx\right )+\frac {5}{4} \int \frac {e^{e^x}}{\log (x)} \, dx+\frac {5}{4} \int \frac {e^{e^x+x} x}{\log (x)} \, dx-2 \int \frac {e^{e^x}}{x \log ^2(x)} \, dx+2 \int \frac {e^{e^x}}{(2+x) \log ^2(x)} \, dx-\frac {5}{2} \int \frac {e^{e^x}}{(2+x) \log ^2(x)} \, dx-\frac {5}{2} \int \frac {e^{e^x+x}}{\log (x)} \, dx-4 \int \frac {e^{e^x}}{(2+x)^2 \log (x)} \, dx+5 \int \frac {e^{e^x}}{(2+x) \log ^2(x)} \, dx+5 \int \frac {e^{e^x}}{(2+x)^2 \log (x)} \, dx+9 \int \frac {e^{e^x+x}}{(2+x) \log (x)} \, dx-10 \int \frac {e^{e^x}}{(2+x)^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.33, size = 25, normalized size = 1.04 \begin {gather*} \frac {e^{e^x} \left (16+5 x^2\right )}{4 (2+x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 21, normalized size = 0.88 \begin {gather*} \frac {{\left (5 \, x^{2} + 16\right )} e^{\left (e^{x}\right )}}{4 \, {\left (x + 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 35, normalized size = 1.46 \begin {gather*} \frac {5 \, x^{2} e^{\left (x + e^{x}\right )} + 16 \, e^{\left (x + e^{x}\right )}}{4 \, {\left (x e^{x} \log \relax (x) + 2 \, e^{x} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.92
method | result | size |
risch | \(\frac {\left (5 x^{2}+16\right ) {\mathrm e}^{{\mathrm e}^{x}}}{4 \left (2+x \right ) \ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.88 \begin {gather*} \frac {{\left (5 \, x^{2} + 16\right )} e^{\left (e^{x}\right )}}{4 \, {\left (x + 2\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 21, normalized size = 0.88 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (5\,x^2+16\right )}{4\,\ln \relax (x)\,\left (x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 22, normalized size = 0.92 \begin {gather*} \frac {\left (5 x^{2} + 16\right ) e^{e^{x}}}{4 x \log {\relax (x )} + 8 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________