Optimal. Leaf size=25 \[ \frac {3+\frac {3 \left (-4+\frac {5 e^{4-x}}{x}\right )}{x}}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6742, 37, 2197} \begin {gather*} \frac {15 e^{4-x}}{x^3}-\frac {3 (8-x)^2}{16 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 37
Rule 2197
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 (-8+x)}{x^3}-\frac {15 e^{4-x} (3+x)}{x^4}\right ) \, dx\\ &=-\left (3 \int \frac {-8+x}{x^3} \, dx\right )-15 \int \frac {e^{4-x} (3+x)}{x^4} \, dx\\ &=\frac {15 e^{4-x}}{x^3}-\frac {3 (8-x)^2}{16 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.80 \begin {gather*} \frac {3 \left (5 e^{4-x}+(-4+x) x\right )}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 24, normalized size = 0.96 \begin {gather*} \frac {3 \, {\left ({\left (x^{2} - 4 \, x\right )} e^{x} + 5 \, e^{4}\right )} e^{\left (-x\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 20, normalized size = 0.80 \begin {gather*} \frac {3 \, {\left (x^{2} - 4 \, x + 5 \, e^{\left (-x + 4\right )}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.88
method | result | size |
risch | \(\frac {3 x -12}{x^{2}}+\frac {15 \,{\mathrm e}^{-x +4}}{x^{3}}\) | \(22\) |
norman | \(\frac {\left (-12 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{x} x^{2}+15 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-x}}{x^{3}}\) | \(26\) |
default | \(-\frac {12}{x^{2}}+\frac {3}{x}-45 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-x}}{3 x^{3}}+\frac {{\mathrm e}^{-x}}{6 x^{2}}-\frac {{\mathrm e}^{-x}}{6 x}+\frac {\expIntegralEi \left (1, x\right )}{6}\right )-15 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-x}}{2 x^{2}}+\frac {{\mathrm e}^{-x}}{2 x}-\frac {\expIntegralEi \left (1, x\right )}{2}\right )\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 25, normalized size = 1.00 \begin {gather*} 15 \, e^{4} \Gamma \left (-2, x\right ) + 45 \, e^{4} \Gamma \left (-3, x\right ) + \frac {3}{x} - \frac {12}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.84 \begin {gather*} \frac {15\,{\mathrm {e}}^{4-x}-12\,x+3\,x^2}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.76 \begin {gather*} - \frac {12 - 3 x}{x^{2}} + \frac {15 e^{4} e^{- x}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________