Optimal. Leaf size=29 \[ \frac {1}{4} e^{\frac {x^2}{3}} x^2 \log ^2\left (\frac {-2+x}{5 x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 e^{\frac {x^2}{3}} x \log \left (\frac {-2+x}{5 x}\right )+e^{\frac {x^2}{3}} \left (-6 x+3 x^2-2 x^3+x^4\right ) \log ^2\left (\frac {-2+x}{5 x}\right )}{-12+6 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{\frac {x^2}{3}} x \log \left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x}+\frac {e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x}+\frac {e^{\frac {x^2}{3}} x^2 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2 (-2+x)}+\frac {e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{3 (2-x)}+\frac {e^{\frac {x^2}{3}} x^4 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{6 (-2+x)}\right ) \, dx\\ &=\frac {1}{6} \int \frac {e^{\frac {x^2}{3}} x^4 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\frac {1}{3} \int \frac {e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {1}{2} \int \frac {e^{\frac {x^2}{3}} x^2 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\int \frac {e^{\frac {x^2}{3}} x \log \left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\int \frac {e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx\\ &=\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int \left (8 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {16 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x}+4 e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+2 e^{\frac {x^2}{3}} x^2 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \, dx+\frac {1}{3} \int \left (-4 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {8 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x}-2 e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )-e^{\frac {x^2}{3}} x^2 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \, dx+\frac {1}{2} \int \left (2 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {4 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x}+e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx+\int \left (-e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {2 e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x}\right ) \, dx-\int \frac {-\sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right )-4 \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{(2-x) x} \, dx\\ &=\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+\frac {1}{2} \int e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx-\int \left (\frac {\sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{(-2+x) x}+\frac {4 \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{(-2+x) x}\right ) \, dx\\ &=\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+\frac {1}{2} \int e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-4 \int \frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{(-2+x) x} \, dx-\sqrt {3 \pi } \int \frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{(-2+x) x} \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx\\ &=\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+\frac {1}{2} \int e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-4 \int \left (\frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{2 (-2+x)}-\frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{2 x}\right ) \, dx-\sqrt {3 \pi } \int \left (\frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{2 (-2+x)}-\frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{2 x}\right ) \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx\\ &=\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+\frac {1}{2} \int e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-2 \int \frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{-2+x} \, dx+2 \int \frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-\frac {1}{2} \sqrt {3 \pi } \int \frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{-2+x} \, dx+\frac {1}{2} \sqrt {3 \pi } \int \frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{x} \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx\\ &=x \, _2F_2\left (\frac {1}{2},\frac {1}{2};\frac {3}{2},\frac {3}{2};\frac {x^2}{3}\right )+\frac {1}{2} \sqrt {3 \pi } \text {erfi}\left (\frac {x}{\sqrt {3}}\right ) \log \left (\frac {1}{5}-\frac {2}{5 x}\right )+\frac {1}{6} \int e^{\frac {x^2}{3}} x^3 \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+\frac {1}{2} \int e^{\frac {x^2}{3}} x \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right ) \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+2 \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-2 \int \frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{-2+x} \, dx+2 \int \frac {\int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx}{x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{2-x} \, dx+\frac {8}{3} \int \frac {e^{\frac {x^2}{3}} \log ^2\left (\frac {1}{5}-\frac {2}{5 x}\right )}{-2+x} \, dx-\frac {1}{2} \sqrt {3 \pi } \int \frac {\text {erfi}\left (\frac {x}{\sqrt {3}}\right )}{-2+x} \, dx+\left (2 \log \left (\frac {1}{5}-\frac {2}{5 x}\right )\right ) \int \frac {e^{\frac {x^2}{3}}}{-2+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 180.18, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 22, normalized size = 0.76 \begin {gather*} \frac {1}{4} \, x^{2} e^{\left (\frac {1}{3} \, x^{2}\right )} \log \left (\frac {x - 2}{5 \, x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 22, normalized size = 0.76 \begin {gather*} \frac {1}{4} \, x^{2} e^{\left (\frac {1}{3} \, x^{2}\right )} \log \left (\frac {x - 2}{5 \, x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.70, size = 820, normalized size = 28.28
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {x^{2}}{3}} \ln \relax (5)^{2} x^{2}}{4}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} x^{2} \ln \relax (x )^{2}}{4}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} x^{2} \ln \left (x -2\right )^{2}}{4}+\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \,x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right ) \ln \relax (x )}{4}-\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \ln \relax (5) x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2}}{4}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} \ln \relax (5) x^{2} \ln \relax (x )}{2}+\left (-\frac {x^{2} {\mathrm e}^{\frac {x^{2}}{3}} \ln \relax (x )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right ) {\mathrm e}^{\frac {x^{2}}{3}}}{4}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2} {\mathrm e}^{\frac {x^{2}}{3}}}{4}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2} {\mathrm e}^{\frac {x^{2}}{3}}}{4}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{3} {\mathrm e}^{\frac {x^{2}}{3}}}{4}-\frac {\ln \relax (5) x^{2} {\mathrm e}^{\frac {x^{2}}{3}}}{2}\right ) \ln \left (x -2\right )-\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{6}}{16}-\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{4}}{16}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{5}}{8}-\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{4}}{16}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{5}}{8}-\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2}}{16}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{3}}{8}+\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{3}}{8}-\frac {{\mathrm e}^{\frac {x^{2}}{3}} \pi ^{2} x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{4}}{4}+\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \ln \relax (5) x^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{3}}{4}-\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \ln \relax (5) x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2}}{4}-\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \,x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2} \ln \relax (x )}{4}+\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{3} \ln \relax (x )}{4}+\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \ln \relax (5) x^{2} \mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )}{4}-\frac {i {\mathrm e}^{\frac {x^{2}}{3}} \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{x}\right )^{2} \ln \relax (x )}{4}\) | \(820\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 63, normalized size = 2.17 \begin {gather*} \frac {1}{4} \, {\left (x^{2} \log \relax (5)^{2} + x^{2} \log \left (x - 2\right )^{2} + 2 \, x^{2} \log \relax (5) \log \relax (x) + x^{2} \log \relax (x)^{2} - 2 \, {\left (x^{2} \log \relax (5) + x^{2} \log \relax (x)\right )} \log \left (x - 2\right )\right )} e^{\left (\frac {1}{3} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{\frac {x^2}{3}}\,{\ln \left (\frac {x-2}{5\,x}\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 71.02, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^{2} e^{\frac {x^{2}}{3}} \log {\left (\frac {\frac {x}{5} - \frac {2}{5}}{x} \right )}^{2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________