Optimal. Leaf size=34 \[ \frac {1}{\log \left (\frac {x^2 \left (-x+\left (1-e^x+\frac {x}{5}\right ) x^2\right )^2}{(-5+x)^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100-160 x-20 x^2+6 x^3+e^x \left (150 x+30 x^2-10 x^3\right )}{\left (-25 x+30 x^2-x^4+e^x \left (-25 x^2+5 x^3\right )\right ) \log ^2\left (\frac {25 x^4-50 x^5+15 x^6+25 e^{2 x} x^6+10 x^7+x^8+e^x \left (50 x^5-50 x^6-10 x^7\right )}{625-250 x+25 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-50+\left (80-75 e^x\right ) x-5 \left (-2+3 e^x\right ) x^2+\left (-3+5 e^x\right ) x^3\right )}{(5-x) x \left (5+5 \left (-1+e^x\right ) x-x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx\\ &=2 \int \frac {-50+\left (80-75 e^x\right ) x-5 \left (-2+3 e^x\right ) x^2+\left (-3+5 e^x\right ) x^3}{(5-x) x \left (5+5 \left (-1+e^x\right ) x-x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx\\ &=2 \int \left (\frac {15+3 x-x^2}{(-5+x) x \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}+\frac {-5-5 x+4 x^2+x^3}{x \left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}\right ) \, dx\\ &=2 \int \frac {15+3 x-x^2}{(-5+x) x \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx+2 \int \frac {-5-5 x+4 x^2+x^3}{x \left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx\\ &=2 \int \left (-\frac {1}{\log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}+\frac {1}{(-5+x) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}-\frac {3}{x \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}\right ) \, dx+2 \int \left (-\frac {5}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}-\frac {5}{x \left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}+\frac {4 x}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}+\frac {x^2}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx\right )+2 \int \frac {1}{(-5+x) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx+2 \int \frac {x^2}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx-6 \int \frac {1}{x \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx+8 \int \frac {x}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx-10 \int \frac {1}{\left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx-10 \int \frac {1}{x \left (-5+5 x-5 e^x x+x^2\right ) \log ^2\left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 30, normalized size = 0.88 \begin {gather*} \frac {1}{\log \left (\frac {x^4 \left (-5-5 \left (-1+e^x\right ) x+x^2\right )^2}{25 (-5+x)^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 66, normalized size = 1.94 \begin {gather*} \frac {1}{\log \left (\frac {x^{8} + 10 \, x^{7} + 25 \, x^{6} e^{\left (2 \, x\right )} + 15 \, x^{6} - 50 \, x^{5} + 25 \, x^{4} - 10 \, {\left (x^{7} + 5 \, x^{6} - 5 \, x^{5}\right )} e^{x}}{25 \, {\left (x^{2} - 10 \, x + 25\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 786, normalized size = 23.12
method | result | size |
risch | \(\frac {2 i}{8 i \ln \relax (x )-4 i \ln \relax (5)+\pi \,\mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right ) \mathrm {csgn}\left (i x^{4}\right )+\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -5\right )^{2}}\right ) \mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x^{4}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i x^{4} \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{3}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}+\pi \mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )^{3}-4 i \ln \left (x -5\right )+4 i \ln \left (-5+x^{2}+\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )+\pi \mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )\right )^{2} \mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-\pi \mathrm {csgn}\left (i \left (x -5\right )\right )^{2} \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x -5\right )\right ) \mathrm {csgn}\left (i \left (x -5\right )^{2}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i x^{4} \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{2} \mathrm {csgn}\left (i x^{4}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -5\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}}{\left (x -5\right )^{2}}\right )^{2}+2 \pi \,\mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )\right ) \mathrm {csgn}\left (i \left (5-x^{2}-\left (-5 \,{\mathrm e}^{x}+5\right ) x \right )^{2}\right )^{2}-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}\) | \(786\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 33, normalized size = 0.97 \begin {gather*} -\frac {1}{2 \, {\left (\log \relax (5) - \log \left (-x^{2} + 5 \, x e^{x} - 5 \, x + 5\right ) + \log \left (x - 5\right ) - 2 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 69, normalized size = 2.03 \begin {gather*} \frac {1}{\ln \left (\frac {25\,x^6\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (10\,x^7+50\,x^6-50\,x^5\right )+25\,x^4-50\,x^5+15\,x^6+10\,x^7+x^8}{25\,x^2-250\,x+625}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.51, size = 65, normalized size = 1.91 \begin {gather*} \frac {1}{\log {\left (\frac {x^{8} + 10 x^{7} + 25 x^{6} e^{2 x} + 15 x^{6} - 50 x^{5} + 25 x^{4} + \left (- 10 x^{7} - 50 x^{6} + 50 x^{5}\right ) e^{x}}{25 x^{2} - 250 x + 625} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________