Optimal. Leaf size=20 \[ \frac {1}{6} \left (3 e^{-\frac {e^8}{x^4}}+x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.38, antiderivative size = 34, normalized size of antiderivative = 1.70, number of steps used = 5, number of rules used = 4, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {12, 6742, 2209, 2288} \begin {gather*} e^{-\frac {e^8}{x^4}} x+\frac {3}{2} e^{-\frac {2 e^8}{x^4}}+\frac {x^2}{6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-\frac {2 e^8}{x^4}} \left (36 e^8+e^{\frac {2 e^8}{x^4}} x^6+e^{\frac {e^8}{x^4}} \left (12 e^8 x+3 x^5\right )\right )}{x^5} \, dx\\ &=\frac {1}{3} \int \left (\frac {36 e^{8-\frac {2 e^8}{x^4}}}{x^5}+x+\frac {3 e^{-\frac {e^8}{x^4}} \left (4 e^8+x^4\right )}{x^4}\right ) \, dx\\ &=\frac {x^2}{6}+12 \int \frac {e^{8-\frac {2 e^8}{x^4}}}{x^5} \, dx+\int \frac {e^{-\frac {e^8}{x^4}} \left (4 e^8+x^4\right )}{x^4} \, dx\\ &=\frac {3}{2} e^{-\frac {2 e^8}{x^4}}+e^{-\frac {e^8}{x^4}} x+\frac {x^2}{6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.06, size = 71, normalized size = 3.55 \begin {gather*} \frac {3}{2} e^{-\frac {2 e^8}{x^4}}+\frac {x^2}{6}+\frac {1}{4} e^2 \sqrt [4]{\frac {1}{x^4}} x \Gamma \left (-\frac {1}{4},\frac {e^8}{x^4}\right )+e^2 \sqrt [4]{\frac {1}{x^4}} x \Gamma \left (\frac {3}{4},\frac {e^8}{x^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 34, normalized size = 1.70 \begin {gather*} \frac {1}{6} \, {\left (x^{2} e^{\left (\frac {2 \, e^{8}}{x^{4}}\right )} + 6 \, x e^{\left (\frac {e^{8}}{x^{4}}\right )} + 9\right )} e^{\left (-\frac {2 \, e^{8}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 35, normalized size = 1.75 \begin {gather*} \frac {1}{6} \, x^{2} + x e^{\left (\frac {8 \, x^{4} - e^{8}}{x^{4}} - 8\right )} + \frac {3}{2} \, e^{\left (-\frac {2 \, e^{8}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 27, normalized size = 1.35
method | result | size |
risch | \(\frac {x^{2}}{6}+x \,{\mathrm e}^{-\frac {{\mathrm e}^{8}}{x^{4}}}+\frac {3 \,{\mathrm e}^{-\frac {2 \,{\mathrm e}^{8}}{x^{4}}}}{2}\) | \(27\) |
norman | \(\frac {\left ({\mathrm e}^{\frac {{\mathrm e}^{8}}{x^{4}}} x^{5}+\frac {3 x^{4}}{2}+\frac {x^{6} {\mathrm e}^{\frac {2 \,{\mathrm e}^{8}}{x^{4}}}}{6}\right ) {\mathrm e}^{-\frac {2 \,{\mathrm e}^{8}}{x^{4}}}}{x^{4}}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 53, normalized size = 2.65 \begin {gather*} \frac {1}{4} \, x \frac {1}{x^{4}}^{\frac {1}{4}} e^{2} \Gamma \left (-\frac {1}{4}, \frac {e^{8}}{x^{4}}\right ) + \frac {1}{6} \, x^{2} + \frac {{\left (x^{4}\right )}^{\frac {3}{4}} e^{2} \Gamma \left (\frac {3}{4}, \frac {e^{8}}{x^{4}}\right )}{x^{3}} + \frac {3}{2} \, e^{\left (-\frac {2 \, e^{8}}{x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 23, normalized size = 1.15 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^8}{x^4}}\,{\left (x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^8}{x^4}}+3\right )}^2}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 27, normalized size = 1.35 \begin {gather*} \frac {x^{2}}{6} + x e^{- \frac {e^{8}}{x^{4}}} + \frac {3 e^{- \frac {2 e^{8}}{x^{4}}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________