Optimal. Leaf size=24 \[ -x+\frac {2 \left (-5+\frac {1}{6 x^2}+x\right )}{\log (5-x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+30 x^3-6 x^4+\left (10-2 x-30 x^3+6 x^4\right ) \log (5-x)+\left (15 x^3-3 x^4\right ) \log ^2(5-x)}{\left (-15 x^3+3 x^4\right ) \log ^2(5-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+30 x^3-6 x^4+\left (10-2 x-30 x^3+6 x^4\right ) \log (5-x)+\left (15 x^3-3 x^4\right ) \log ^2(5-x)}{x^3 (-15+3 x) \log ^2(5-x)} \, dx\\ &=\int \left (-1+\frac {-1+30 x^2-6 x^3}{3 (-5+x) x^2 \log ^2(5-x)}+\frac {2 \left (-1+3 x^3\right )}{3 x^3 \log (5-x)}\right ) \, dx\\ &=-x+\frac {1}{3} \int \frac {-1+30 x^2-6 x^3}{(-5+x) x^2 \log ^2(5-x)} \, dx+\frac {2}{3} \int \frac {-1+3 x^3}{x^3 \log (5-x)} \, dx\\ &=-x+\frac {1}{3} \int \left (-\frac {6}{\log ^2(5-x)}-\frac {1}{25 (-5+x) \log ^2(5-x)}+\frac {1}{5 x^2 \log ^2(5-x)}+\frac {1}{25 x \log ^2(5-x)}\right ) \, dx+\frac {2}{3} \int \left (\frac {3}{\log (5-x)}-\frac {1}{x^3 \log (5-x)}\right ) \, dx\\ &=-x-\frac {1}{75} \int \frac {1}{(-5+x) \log ^2(5-x)} \, dx+\frac {1}{75} \int \frac {1}{x \log ^2(5-x)} \, dx+\frac {1}{15} \int \frac {1}{x^2 \log ^2(5-x)} \, dx-\frac {2}{3} \int \frac {1}{x^3 \log (5-x)} \, dx-2 \int \frac {1}{\log ^2(5-x)} \, dx+2 \int \frac {1}{\log (5-x)} \, dx\\ &=-x+\frac {1}{75} \int \frac {1}{x \log ^2(5-x)} \, dx-\frac {1}{75} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,5-x\right )+\frac {1}{15} \int \frac {1}{x^2 \log ^2(5-x)} \, dx-\frac {2}{3} \int \frac {1}{x^3 \log (5-x)} \, dx+2 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,5-x\right )-2 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )\\ &=-x-\frac {2 (5-x)}{\log (5-x)}-2 \text {li}(5-x)+\frac {1}{75} \int \frac {1}{x \log ^2(5-x)} \, dx-\frac {1}{75} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (5-x)\right )+\frac {1}{15} \int \frac {1}{x^2 \log ^2(5-x)} \, dx-\frac {2}{3} \int \frac {1}{x^3 \log (5-x)} \, dx+2 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5-x\right )\\ &=-x+\frac {1}{75 \log (5-x)}-\frac {2 (5-x)}{\log (5-x)}+\frac {1}{75} \int \frac {1}{x \log ^2(5-x)} \, dx+\frac {1}{15} \int \frac {1}{x^2 \log ^2(5-x)} \, dx-\frac {2}{3} \int \frac {1}{x^3 \log (5-x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 25, normalized size = 1.04 \begin {gather*} \frac {1}{3} \left (-3 x+\frac {-30+\frac {1}{x^2}+6 x}{\log (5-x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 36, normalized size = 1.50 \begin {gather*} -\frac {3 \, x^{3} \log \left (-x + 5\right ) - 6 \, x^{3} + 30 \, x^{2} - 1}{3 \, x^{2} \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 29, normalized size = 1.21 \begin {gather*} -x + \frac {6 \, x^{3} - 30 \, x^{2} + 1}{3 \, x^{2} \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 30, normalized size = 1.25
method | result | size |
risch | \(-x +\frac {6 x^{3}-30 x^{2}+1}{3 x^{2} \ln \left (5-x \right )}\) | \(30\) |
norman | \(\frac {\frac {1}{3}-10 x^{2}+2 x^{3}-x^{3} \ln \left (5-x \right )}{\ln \left (5-x \right ) x^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 36, normalized size = 1.50 \begin {gather*} -\frac {3 \, x^{3} \log \left (-x + 5\right ) - 6 \, x^{3} + 30 \, x^{2} - 1}{3 \, x^{2} \log \left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 28, normalized size = 1.17 \begin {gather*} \frac {2\,x^3-10\,x^2+\frac {1}{3}}{x^2\,\ln \left (5-x\right )}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 0.92 \begin {gather*} - x + \frac {6 x^{3} - 30 x^{2} + 1}{3 x^{2} \log {\left (5 - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________