Optimal. Leaf size=29 \[ \frac {5 x^2}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {40 x+5 x^2+10 x^5-20 x^3 \log (x)+\left (-60 x^3-5 x^4-10 x^7\right ) \log ^2(x)+\left (-20 x+20 x^3 \log ^2(x)\right ) \log \left (1-x^2 \log ^2(x)\right )}{-16-8 x-x^2+8 x^4+2 x^5-x^8+\left (16 x^2+8 x^3+x^4-8 x^6-2 x^7+x^{10}\right ) \log ^2(x)+\left (16+4 x-4 x^4+\left (-16 x^2-4 x^3+4 x^6\right ) \log ^2(x)\right ) \log \left (1-x^2 \log ^2(x)\right )+\left (-4+4 x^2 \log ^2(x)\right ) \log ^2\left (1-x^2 \log ^2(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x \left (-8-x-2 x^4+4 x^2 \log (x)+x^2 \log ^2(x) \left (12+x+2 x^4-4 \log \left (1-x^2 \log ^2(x)\right )\right )+4 \log \left (1-x^2 \log ^2(x)\right )\right )}{\left (1-x^2 \log ^2(x)\right ) \left (4+x-x^4-2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx\\ &=5 \int \frac {x \left (-8-x-2 x^4+4 x^2 \log (x)+x^2 \log ^2(x) \left (12+x+2 x^4-4 \log \left (1-x^2 \log ^2(x)\right )\right )+4 \log \left (1-x^2 \log ^2(x)\right )\right )}{\left (1-x^2 \log ^2(x)\right ) \left (4+x-x^4-2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx\\ &=5 \int \left (-\frac {x^2 \left (1-4 x^3+4 x \log (x)+4 x \log ^2(x)-x^2 \log ^2(x)+4 x^5 \log ^2(x)\right )}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}+\frac {2 x}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )}\right ) \, dx\\ &=-\left (5 \int \frac {x^2 \left (1-4 x^3+4 x \log (x)+4 x \log ^2(x)-x^2 \log ^2(x)+4 x^5 \log ^2(x)\right )}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx\right )+10 \int \frac {x}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )} \, dx\\ &=-\left (5 \int \left (\frac {x^2}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}-\frac {4 x^5}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}+\frac {4 x^3 \log (x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}+\frac {4 x^3 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}-\frac {x^4 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}+\frac {4 x^7 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2}\right ) \, dx\right )+10 \int \frac {x}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )} \, dx\\ &=-\left (5 \int \frac {x^2}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx\right )+5 \int \frac {x^4 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx+10 \int \frac {x}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )} \, dx+20 \int \frac {x^5}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx-20 \int \frac {x^3 \log (x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx-20 \int \frac {x^3 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx-20 \int \frac {x^7 \log ^2(x)}{\left (-1+x^2 \log ^2(x)\right ) \left (-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 1.00 \begin {gather*} \frac {5 x^2}{-4-x+x^4+2 \log \left (1-x^2 \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 29, normalized size = 1.00 \begin {gather*} \frac {5 \, x^{2}}{x^{4} - x + 2 \, \log \left (-x^{2} \log \relax (x)^{2} + 1\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 29, normalized size = 1.00 \begin {gather*} \frac {5 \, x^{2}}{x^{4} - x + 2 \, \log \left (-x^{2} \log \relax (x)^{2} + 1\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.03
method | result | size |
risch | \(\frac {5 x^{2}}{x^{4}-x +2 \ln \left (-x^{2} \ln \relax (x )^{2}+1\right )-4}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 34, normalized size = 1.17 \begin {gather*} \frac {5 \, x^{2}}{x^{4} - x + 2 \, \log \left (x \log \relax (x) + 1\right ) + 2 \, \log \left (-x \log \relax (x) + 1\right ) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {40\,x-20\,x^3\,\ln \relax (x)-\ln \left (1-x^2\,{\ln \relax (x)}^2\right )\,\left (20\,x-20\,x^3\,{\ln \relax (x)}^2\right )-{\ln \relax (x)}^2\,\left (10\,x^7+5\,x^4+60\,x^3\right )+5\,x^2+10\,x^5}{{\ln \relax (x)}^2\,\left (x^{10}-2\,x^7-8\,x^6+x^4+8\,x^3+16\,x^2\right )-8\,x+\ln \left (1-x^2\,{\ln \relax (x)}^2\right )\,\left (4\,x-{\ln \relax (x)}^2\,\left (-4\,x^6+4\,x^3+16\,x^2\right )-4\,x^4+16\right )-x^2+8\,x^4+2\,x^5-x^8+{\ln \left (1-x^2\,{\ln \relax (x)}^2\right )}^2\,\left (4\,x^2\,{\ln \relax (x)}^2-4\right )-16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 24, normalized size = 0.83 \begin {gather*} \frac {5 x^{2}}{x^{4} - x + 2 \log {\left (- x^{2} \log {\relax (x )}^{2} + 1 \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________