Optimal. Leaf size=22 \[ x \left (-1-e^{\frac {1}{-4+\frac {5}{x}}}+2 x+\log (5)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25+140 x-176 x^2+64 x^3+e^{-\frac {x}{-5+4 x}} \left (-25+35 x-16 x^2\right )+\left (25-40 x+16 x^2\right ) \log (5)}{25-40 x+16 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+140 x-176 x^2+64 x^3+e^{-\frac {x}{-5+4 x}} \left (-25+35 x-16 x^2\right )+\left (25-40 x+16 x^2\right ) \log (5)}{(-5+4 x)^2} \, dx\\ &=\int \left (-1+4 x+\frac {e^{\frac {x}{5-4 x}} \left (-25+35 x-16 x^2\right )}{(5-4 x)^2}+\log (5)\right ) \, dx\\ &=2 x^2-x (1-\log (5))+\int \frac {e^{\frac {x}{5-4 x}} \left (-25+35 x-16 x^2\right )}{(5-4 x)^2} \, dx\\ &=2 x^2-x (1-\log (5))+\int \left (-e^{\frac {x}{5-4 x}}-\frac {25 e^{\frac {x}{5-4 x}}}{4 (-5+4 x)^2}-\frac {5 e^{\frac {x}{5-4 x}}}{4 (-5+4 x)}\right ) \, dx\\ &=2 x^2-x (1-\log (5))-\frac {5}{4} \int \frac {e^{\frac {x}{5-4 x}}}{-5+4 x} \, dx-\frac {25}{4} \int \frac {e^{\frac {x}{5-4 x}}}{(-5+4 x)^2} \, dx-\int e^{\frac {x}{5-4 x}} \, dx\\ &=2 x^2-x (1-\log (5))-\frac {5}{4} \int \frac {e^{-\frac {1}{4}+\frac {5}{4 (5-4 x)}}}{-5+4 x} \, dx-\frac {25}{4} \int \frac {e^{-\frac {1}{4}+\frac {5}{4 (5-4 x)}}}{(-5+4 x)^2} \, dx-\int e^{\frac {x}{5-4 x}} \, dx\\ &=-\frac {5}{4} e^{-\frac {1}{4}+\frac {5}{4 (5-4 x)}}+2 x^2+\frac {5 \text {Ei}\left (\frac {5}{4 (5-4 x)}\right )}{16 \sqrt [4]{e}}-x (1-\log (5))-\int e^{\frac {x}{5-4 x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 1.00 \begin {gather*} x \left (-1-e^{\frac {x}{5-4 x}}+2 x+\log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 27, normalized size = 1.23 \begin {gather*} 2 \, x^{2} - x e^{\left (-\frac {x}{4 \, x - 5}\right )} + x \log \relax (5) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.50, size = 100, normalized size = 4.55 \begin {gather*} -\frac {5 \, {\left (\frac {8 \, x e^{\left (-\frac {x}{4 \, x - 5}\right )}}{4 \, x - 5} - \frac {32 \, x^{2} e^{\left (-\frac {x}{4 \, x - 5}\right )}}{{\left (4 \, x - 5\right )}^{2}} + \frac {8 \, x \log \relax (5)}{4 \, x - 5} + \frac {32 \, x}{4 \, x - 5} - 2 \, \log \relax (5) - 3\right )}}{8 \, {\left (\frac {8 \, x}{4 \, x - 5} - \frac {16 \, x^{2}}{{\left (4 \, x - 5\right )}^{2}} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 28, normalized size = 1.27
method | result | size |
risch | \(x \ln \relax (5)+2 x^{2}-x \,{\mathrm e}^{-\frac {x}{4 x -5}}-x\) | \(28\) |
derivativedivides | \(\frac {\ln \relax (5) \left (4 x -5\right )}{4}+\frac {\left (4 x -5\right )^{2}}{8}+4 x -5-\frac {{\mathrm e}^{-\frac {1}{4}-\frac {5}{4 \left (4 x -5\right )}} \left (4 x -5\right )}{4}-\frac {5 \,{\mathrm e}^{-\frac {1}{4}-\frac {5}{4 \left (4 x -5\right )}}}{4}\) | \(57\) |
default | \(\frac {\ln \relax (5) \left (4 x -5\right )}{4}+\frac {\left (4 x -5\right )^{2}}{8}+4 x -5-\frac {{\mathrm e}^{-\frac {1}{4}-\frac {5}{4 \left (4 x -5\right )}} \left (4 x -5\right )}{4}-\frac {5 \,{\mathrm e}^{-\frac {1}{4}-\frac {5}{4 \left (4 x -5\right )}}}{4}\) | \(57\) |
norman | \(\frac {\left (-14+4 \ln \relax (5)\right ) x^{2}+8 x^{3}+5 x \,{\mathrm e}^{-\frac {x}{4 x -5}}-4 x^{2} {\mathrm e}^{-\frac {x}{4 x -5}}+\frac {25}{4}-\frac {25 \ln \relax (5)}{4}}{4 x -5}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x^{2} - x e^{\left (-\frac {5}{4 \, {\left (4 \, x - 5\right )}} - \frac {1}{4}\right )} + \frac {1}{4} \, {\left (4 \, x - \frac {25}{4 \, x - 5} + 10 \, \log \left (4 \, x - 5\right )\right )} \log \relax (5) + \frac {5}{2} \, {\left (\frac {5}{4 \, x - 5} - \log \left (4 \, x - 5\right )\right )} \log \relax (5) - x - \frac {25 \, \log \relax (5)}{4 \, {\left (4 \, x - 5\right )}} - 5 \, e^{\left (-\frac {5}{4 \, {\left (4 \, x - 5\right )}} - \frac {1}{4}\right )} + 25 \, \int \frac {e^{\left (-\frac {5}{4 \, {\left (4 \, x - 5\right )}}\right )}}{16 \, x^{2} e^{\frac {1}{4}} - 40 \, x e^{\frac {1}{4}} + 25 \, e^{\frac {1}{4}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 26, normalized size = 1.18 \begin {gather*} 2\,x^2-x\,\left ({\mathrm {e}}^{-\frac {x}{4\,x-5}}-\ln \relax (5)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} 2 x^{2} + x \left (-1 + \log {\relax (5 )}\right ) - x e^{- \frac {x}{4 x - 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________