Optimal. Leaf size=30 \[ \frac {5-\frac {5}{\left (2-e^x\right ) x}-x}{3 (3+3 x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10+20 x-24 x^2-6 e^{2 x} x^2+e^x \left (-5-15 x+19 x^2\right )}{36 x^2+72 x^3+36 x^4+e^x \left (-36 x^2-72 x^3-36 x^4\right )+e^{2 x} \left (9 x^2+18 x^3+9 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10+20 x-24 x^2-6 e^{2 x} x^2+e^x \left (-5-15 x+19 x^2\right )}{9 \left (2-e^x\right )^2 x^2 (1+x)^2} \, dx\\ &=\frac {1}{9} \int \frac {10+20 x-24 x^2-6 e^{2 x} x^2+e^x \left (-5-15 x+19 x^2\right )}{\left (2-e^x\right )^2 x^2 (1+x)^2} \, dx\\ &=\frac {1}{9} \int \left (-\frac {6}{(1+x)^2}-\frac {10}{\left (-2+e^x\right )^2 x (1+x)}-\frac {5 \left (1+3 x+x^2\right )}{\left (-2+e^x\right ) x^2 (1+x)^2}\right ) \, dx\\ &=\frac {2}{3 (1+x)}-\frac {5}{9} \int \frac {1+3 x+x^2}{\left (-2+e^x\right ) x^2 (1+x)^2} \, dx-\frac {10}{9} \int \frac {1}{\left (-2+e^x\right )^2 x (1+x)} \, dx\\ &=\frac {2}{3 (1+x)}-\frac {5}{9} \int \left (\frac {1}{\left (-2+e^x\right ) x^2}+\frac {1}{\left (-2+e^x\right ) x}-\frac {1}{\left (-2+e^x\right ) (1+x)^2}-\frac {1}{\left (-2+e^x\right ) (1+x)}\right ) \, dx-\frac {10}{9} \int \left (\frac {1}{\left (-2+e^x\right )^2 x}-\frac {1}{\left (-2+e^x\right )^2 (1+x)}\right ) \, dx\\ &=\frac {2}{3 (1+x)}-\frac {5}{9} \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx-\frac {5}{9} \int \frac {1}{\left (-2+e^x\right ) x} \, dx+\frac {5}{9} \int \frac {1}{\left (-2+e^x\right ) (1+x)^2} \, dx+\frac {5}{9} \int \frac {1}{\left (-2+e^x\right ) (1+x)} \, dx-\frac {10}{9} \int \frac {1}{\left (-2+e^x\right )^2 x} \, dx+\frac {10}{9} \int \frac {1}{\left (-2+e^x\right )^2 (1+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 23, normalized size = 0.77 \begin {gather*} \frac {6+\frac {5}{\left (-2+e^x\right ) x}}{9 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.07 \begin {gather*} -\frac {6 \, x e^{x} - 12 \, x + 5}{9 \, {\left (2 \, x^{2} - {\left (x^{2} + x\right )} e^{x} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 33, normalized size = 1.10 \begin {gather*} \frac {6 \, x e^{x} - 12 \, x + 5}{9 \, {\left (x^{2} e^{x} - 2 \, x^{2} + x e^{x} - 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 0.83
method | result | size |
risch | \(\frac {2}{3 \left (x +1\right )}+\frac {5}{9 x \left (x +1\right ) \left ({\mathrm e}^{x}-2\right )}\) | \(25\) |
norman | \(\frac {\frac {5}{9}-\frac {4 x}{3}+\frac {2 \,{\mathrm e}^{x} x}{3}}{x \left ({\mathrm e}^{x}-2\right ) \left (x +1\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 32, normalized size = 1.07 \begin {gather*} -\frac {6 \, x e^{x} - 12 \, x + 5}{9 \, {\left (2 \, x^{2} - {\left (x^{2} + x\right )} e^{x} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 27, normalized size = 0.90 \begin {gather*} \frac {5}{9\,x\,\left ({\mathrm {e}}^x-2\right )\,\left (x+1\right )}-\frac {2\,x}{3\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 27, normalized size = 0.90 \begin {gather*} \frac {5}{- 18 x^{2} - 18 x + \left (9 x^{2} + 9 x\right ) e^{x}} + \frac {2}{3 x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________