Optimal. Leaf size=28 \[ -\log \left (-e^x+x\right )+\log \left (\left (2-4 \left (-5-2 x+x^2\right )^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {49-40 x+36 x^2+40 x^3-14 x^4+e^x \left (31-88 x-36 x^2+24 x^3-2 x^4\right )}{-49 x-40 x^2+12 x^3+8 x^4-2 x^5+e^x \left (49+40 x-12 x^2-8 x^3+2 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {49-40 x+36 x^2+40 x^3-14 x^4+e^x \left (31-88 x-36 x^2+24 x^3-2 x^4\right )}{\left (e^x-x\right ) \left (49+40 x-12 x^2-8 x^3+2 x^4\right )} \, dx\\ &=\int \left (\frac {-1+x}{-e^x+x}+\frac {31-88 x-36 x^2+24 x^3-2 x^4}{49+40 x-12 x^2-8 x^3+2 x^4}\right ) \, dx\\ &=\int \frac {-1+x}{-e^x+x} \, dx+\int \frac {31-88 x-36 x^2+24 x^3-2 x^4}{49+40 x-12 x^2-8 x^3+2 x^4} \, dx\\ &=\int \left (\frac {1}{e^x-x}+\frac {x}{-e^x+x}\right ) \, dx+\operatorname {Subst}\left (\int \frac {-71-96 x+24 x^2+16 x^3-2 x^4}{71-24 x^2+2 x^4} \, dx,x,-1+x\right )\\ &=\int \frac {1}{e^x-x} \, dx+\int \frac {x}{-e^x+x} \, dx+\operatorname {Subst}\left (\int \frac {x \left (-96+16 x^2\right )}{71-24 x^2+2 x^4} \, dx,x,-1+x\right )+\operatorname {Subst}\left (\int \frac {-71+24 x^2-2 x^4}{71-24 x^2+2 x^4} \, dx,x,-1+x\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {-96+16 x}{71-24 x+2 x^2} \, dx,x,(-1+x)^2\right )+\int \frac {1}{e^x-x} \, dx+\int \frac {x}{-e^x+x} \, dx+\operatorname {Subst}(\int -1 \, dx,x,-1+x)\\ &=-x+2 \log \left (71-24 (1-x)^2+2 (1-x)^4\right )+\int \frac {1}{e^x-x} \, dx+\int \frac {x}{-e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 34, normalized size = 1.21 \begin {gather*} -\log \left (e^x-x\right )+2 \log \left (49+40 x-12 x^2-8 x^3+2 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 33, normalized size = 1.18 \begin {gather*} 2 \, \log \left (2 \, x^{4} - 8 \, x^{3} - 12 \, x^{2} + 40 \, x + 49\right ) - \log \left (-x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 33, normalized size = 1.18 \begin {gather*} 2 \, \log \left (2 \, x^{4} - 8 \, x^{3} - 12 \, x^{2} + 40 \, x + 49\right ) - \log \left (x - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 34, normalized size = 1.21
method | result | size |
norman | \(-\ln \left (x -{\mathrm e}^{x}\right )+2 \ln \left (2 x^{4}-8 x^{3}-12 x^{2}+40 x +49\right )\) | \(34\) |
risch | \(2 \ln \left (2 x^{4}-8 x^{3}-12 x^{2}+40 x +49\right )-\ln \left ({\mathrm e}^{x}-x \right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 33, normalized size = 1.18 \begin {gather*} 2 \, \log \left (2 \, x^{4} - 8 \, x^{3} - 12 \, x^{2} + 40 \, x + 49\right ) - \log \left (-x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 31, normalized size = 1.11 \begin {gather*} 2\,\ln \left (x^4-4\,x^3-6\,x^2+20\,x+\frac {49}{2}\right )-\ln \left ({\mathrm {e}}^x-x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.04 \begin {gather*} - \log {\left (- x + e^{x} \right )} + 2 \log {\left (2 x^{4} - 8 x^{3} - 12 x^{2} + 40 x + 49 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________