Optimal. Leaf size=27 \[ \frac {25}{\left (-\frac {x^2}{5 \left (-x+4 x^2\right )}+\log (1+x)\right )^4} \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {375000-6937500 x+52250000 x^2-201000000 x^3+396000000 x^4-320000000 x^5}{-x^5-x^6+\left (-25 x^4+75 x^5+100 x^6\right ) \log (1+x)+\left (-250 x^3+1750 x^4-2000 x^5-4000 x^6\right ) \log ^2(1+x)+\left (-1250 x^2+13750 x^3-45000 x^4+20000 x^5+80000 x^6\right ) \log ^3(1+x)+\left (-3125 x+46875 x^2-250000 x^3+500000 x^4-800000 x^6\right ) \log ^4(1+x)+\left (-3125+59375 x-437500 x^2+1500000 x^3-2000000 x^4-800000 x^5+3200000 x^6\right ) \log ^5(1+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {62500 (1-4 x)^3 \left (-6+39 x-80 x^2\right )}{(1+x) (x-5 (-1+4 x) \log (1+x))^5} \, dx\\ &=62500 \int \frac {(1-4 x)^3 \left (-6+39 x-80 x^2\right )}{(1+x) (x-5 (-1+4 x) \log (1+x))^5} \, dx\\ &=62500 \int \left (-\frac {15619}{(-x-5 \log (1+x)+20 x \log (1+x))^5}+\frac {15508 x}{(-x-5 \log (1+x)+20 x \log (1+x))^5}-\frac {14672 x^2}{(-x-5 \log (1+x)+20 x \log (1+x))^5}+\frac {11456 x^3}{(-x-5 \log (1+x)+20 x \log (1+x))^5}-\frac {5120 x^4}{(-x-5 \log (1+x)+20 x \log (1+x))^5}+\frac {15625}{(1+x) (-x-5 \log (1+x)+20 x \log (1+x))^5}\right ) \, dx\\ &=-\left (320000000 \int \frac {x^4}{(-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx\right )+716000000 \int \frac {x^3}{(-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx-917000000 \int \frac {x^2}{(-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx+969250000 \int \frac {x}{(-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx-976187500 \int \frac {1}{(-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx+976562500 \int \frac {1}{(1+x) (-x-5 \log (1+x)+20 x \log (1+x))^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.35, size = 23, normalized size = 0.85 \begin {gather*} \frac {15625 (1-4 x)^4}{(x+(5-20 x) \log (1+x))^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 122, normalized size = 4.52 \begin {gather*} \frac {15625 \, {\left (256 \, x^{4} - 256 \, x^{3} + 96 \, x^{2} - 16 \, x + 1\right )}}{625 \, {\left (256 \, x^{4} - 256 \, x^{3} + 96 \, x^{2} - 16 \, x + 1\right )} \log \left (x + 1\right )^{4} + x^{4} - 500 \, {\left (64 \, x^{4} - 48 \, x^{3} + 12 \, x^{2} - x\right )} \log \left (x + 1\right )^{3} + 150 \, {\left (16 \, x^{4} - 8 \, x^{3} + x^{2}\right )} \log \left (x + 1\right )^{2} - 20 \, {\left (4 \, x^{4} - x^{3}\right )} \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 277, normalized size = 10.26 \begin {gather*} \frac {15625 \, {\left (20480 \, x^{6} - 30464 \, x^{5} + 19200 \, x^{4} - 6560 \, x^{3} + 1280 \, x^{2} - 135 \, x + 6\right )}}{12800000 \, x^{6} \log \left (x + 1\right )^{4} - 2560000 \, x^{6} \log \left (x + 1\right )^{3} - 19040000 \, x^{5} \log \left (x + 1\right )^{4} + 192000 \, x^{6} \log \left (x + 1\right )^{2} + 3168000 \, x^{5} \log \left (x + 1\right )^{3} + 12000000 \, x^{4} \log \left (x + 1\right )^{4} - 6400 \, x^{6} \log \left (x + 1\right ) - 189600 \, x^{5} \log \left (x + 1\right )^{2} - 1608000 \, x^{4} \log \left (x + 1\right )^{3} - 4100000 \, x^{3} \log \left (x + 1\right )^{4} + 80 \, x^{6} + 4720 \, x^{5} \log \left (x + 1\right ) + 73200 \, x^{4} \log \left (x + 1\right )^{2} + 418000 \, x^{3} \log \left (x + 1\right )^{3} + 800000 \, x^{2} \log \left (x + 1\right )^{4} - 39 \, x^{5} - 1260 \, x^{4} \log \left (x + 1\right ) - 13050 \, x^{3} \log \left (x + 1\right )^{2} - 55500 \, x^{2} \log \left (x + 1\right )^{3} - 84375 \, x \log \left (x + 1\right )^{4} + 6 \, x^{4} + 120 \, x^{3} \log \left (x + 1\right ) + 900 \, x^{2} \log \left (x + 1\right )^{2} + 3000 \, x \log \left (x + 1\right )^{3} + 3750 \, \log \left (x + 1\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 42, normalized size = 1.56
method | result | size |
risch | \(\frac {15625 \left (64 x^{3}-48 x^{2}+12 x -1\right ) \left (4 x -1\right )}{\left (20 \ln \left (x +1\right ) x -5 \ln \left (x +1\right )-x \right )^{4}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 122, normalized size = 4.52 \begin {gather*} \frac {15625 \, {\left (256 \, x^{4} - 256 \, x^{3} + 96 \, x^{2} - 16 \, x + 1\right )}}{625 \, {\left (256 \, x^{4} - 256 \, x^{3} + 96 \, x^{2} - 16 \, x + 1\right )} \log \left (x + 1\right )^{4} + x^{4} - 500 \, {\left (64 \, x^{4} - 48 \, x^{3} + 12 \, x^{2} - x\right )} \log \left (x + 1\right )^{3} + 150 \, {\left (16 \, x^{4} - 8 \, x^{3} + x^{2}\right )} \log \left (x + 1\right )^{2} - 20 \, {\left (4 \, x^{4} - x^{3}\right )} \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {320000000\,x^5-396000000\,x^4+201000000\,x^3-52250000\,x^2+6937500\,x-375000}{{\ln \left (x+1\right )}^4\,\left (800000\,x^6-500000\,x^4+250000\,x^3-46875\,x^2+3125\,x\right )+{\ln \left (x+1\right )}^2\,\left (4000\,x^6+2000\,x^5-1750\,x^4+250\,x^3\right )+{\ln \left (x+1\right )}^5\,\left (-3200000\,x^6+800000\,x^5+2000000\,x^4-1500000\,x^3+437500\,x^2-59375\,x+3125\right )-{\ln \left (x+1\right )}^3\,\left (80000\,x^6+20000\,x^5-45000\,x^4+13750\,x^3-1250\,x^2\right )-\ln \left (x+1\right )\,\left (100\,x^6+75\,x^5-25\,x^4\right )+x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.69, size = 112, normalized size = 4.15 \begin {gather*} \frac {4000000 x^{4} - 4000000 x^{3} + 1500000 x^{2} - 250000 x + 15625}{x^{4} + \left (- 80 x^{4} + 20 x^{3}\right ) \log {\left (x + 1 \right )} + \left (2400 x^{4} - 1200 x^{3} + 150 x^{2}\right ) \log {\left (x + 1 \right )}^{2} + \left (- 32000 x^{4} + 24000 x^{3} - 6000 x^{2} + 500 x\right ) \log {\left (x + 1 \right )}^{3} + \left (160000 x^{4} - 160000 x^{3} + 60000 x^{2} - 10000 x + 625\right ) \log {\left (x + 1 \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________