Optimal. Leaf size=19 \[ \log \left (5 \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (5+x)+\left (6+x+e^x (6+x)\right ) \log \left (3+3 e^x\right )}{\left (5+x+e^x (5+x)\right ) \log \left (3+3 e^x\right ) \log \left (e^x (5+x) \log \left (3+3 e^x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (5+x)+\left (6+x+e^x (6+x)\right ) \log \left (3+3 e^x\right )}{\left (1+e^x\right ) (5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=\int \left (-\frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}+\frac {5+x+6 \log \left (3 \left (1+e^x\right )\right )+x \log \left (3 \left (1+e^x\right )\right )}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}\right ) \, dx\\ &=-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {5+x+6 \log \left (3 \left (1+e^x\right )\right )+x \log \left (3 \left (1+e^x\right )\right )}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {5+x+(6+x) \log \left (3 \left (1+e^x\right )\right )}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=\int \left (\frac {6}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}+\frac {x}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}+\frac {5}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}+\frac {x}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}\right ) \, dx-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=5 \int \frac {1}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+6 \int \frac {1}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {x}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {x}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=5 \int \frac {1}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+6 \int \frac {1}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \left (\frac {1}{\log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}-\frac {5}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}\right ) \, dx+\int \left (\frac {1}{\log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}-\frac {5}{(5+x) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )}\right ) \, dx-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ &=-\left (5 \int \frac {1}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\right )+6 \int \frac {1}{(5+x) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {1}{\log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx+\int \frac {1}{\log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx-\int \frac {1}{\left (1+e^x\right ) \log \left (3 \left (1+e^x\right )\right ) \log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 17, normalized size = 0.89 \begin {gather*} \log \left (\log \left (e^x (5+x) \log \left (3 \left (1+e^x\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 28, normalized size = 1.47 \begin {gather*} \log \left (\log \left (e^{\left (x + \log \left (x + 5\right )\right )} \log \left (\frac {3 \, {\left (x + e^{\left (x + \log \left (x + 5\right )\right )} + 5\right )}}{x + 5}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.84 \begin {gather*} \log \left (x + \log \left (x + 5\right ) + \log \left (\log \relax (3) + \log \left (e^{x} + 1\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 256, normalized size = 13.47
method | result | size |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right )\right ) \mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )-\pi \,\mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right )\right ) \mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{2}+\pi \mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{3}-\pi \,\mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{2}+\pi \,\mathrm {csgn}\left (i \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+\pi \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{3}-\pi \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \left (3 \,{\mathrm e}^{x}+3\right ) \left (5+x \right )\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )+2 i \ln \left (5+x \right )+2 i \ln \left (\ln \left (3 \,{\mathrm e}^{x}+3\right )\right )\right )}{2}\right )\) | \(256\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 16, normalized size = 0.84 \begin {gather*} \log \left (x + \log \left (x + 5\right ) + \log \left (\log \relax (3) + \log \left (e^{x} + 1\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.54, size = 15, normalized size = 0.79 \begin {gather*} \ln \left (x+\ln \left (\ln \left (3\,{\mathrm {e}}^x+3\right )\,\left (x+5\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.91, size = 17, normalized size = 0.89 \begin {gather*} \log {\left (\log {\left (\left (x + 5\right ) e^{x} \log {\left (3 e^{x} + 3 \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________