3.65.49 \(\int \frac {1}{9} (-8 x-6 x^2) \log ^2(\log (5)) \, dx\)

Optimal. Leaf size=19 \[ -3+\frac {1}{9} (-4-2 x) x^2 \log ^2(\log (5)) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 25, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12} \begin {gather*} -\frac {2}{9} x^3 \log ^2(\log (5))-\frac {4}{9} x^2 \log ^2(\log (5)) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((-8*x - 6*x^2)*Log[Log[5]]^2)/9,x]

[Out]

(-4*x^2*Log[Log[5]]^2)/9 - (2*x^3*Log[Log[5]]^2)/9

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \log ^2(\log (5)) \int \left (-8 x-6 x^2\right ) \, dx\\ &=-\frac {4}{9} x^2 \log ^2(\log (5))-\frac {2}{9} x^3 \log ^2(\log (5))\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 18, normalized size = 0.95 \begin {gather*} -\frac {2}{9} \left (2 x^2+x^3\right ) \log ^2(\log (5)) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((-8*x - 6*x^2)*Log[Log[5]]^2)/9,x]

[Out]

(-2*(2*x^2 + x^3)*Log[Log[5]]^2)/9

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 16, normalized size = 0.84 \begin {gather*} -\frac {2}{9} \, {\left (x^{3} + 2 \, x^{2}\right )} \log \left (\log \relax (5)\right )^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-6*x^2-8*x)*log(log(5))^2,x, algorithm="fricas")

[Out]

-2/9*(x^3 + 2*x^2)*log(log(5))^2

________________________________________________________________________________________

giac [A]  time = 0.14, size = 16, normalized size = 0.84 \begin {gather*} -\frac {2}{9} \, {\left (x^{3} + 2 \, x^{2}\right )} \log \left (\log \relax (5)\right )^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-6*x^2-8*x)*log(log(5))^2,x, algorithm="giac")

[Out]

-2/9*(x^3 + 2*x^2)*log(log(5))^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 14, normalized size = 0.74




method result size



gosper \(-\frac {2 \ln \left (\ln \relax (5)\right )^{2} \left (2+x \right ) x^{2}}{9}\) \(14\)
default \(\frac {\ln \left (\ln \relax (5)\right )^{2} \left (-2 x^{3}-4 x^{2}\right )}{9}\) \(19\)
norman \(-\frac {4 x^{2} \ln \left (\ln \relax (5)\right )^{2}}{9}-\frac {2 x^{3} \ln \left (\ln \relax (5)\right )^{2}}{9}\) \(22\)
risch \(-\frac {4 x^{2} \ln \left (\ln \relax (5)\right )^{2}}{9}-\frac {2 x^{3} \ln \left (\ln \relax (5)\right )^{2}}{9}\) \(22\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/9*(-6*x^2-8*x)*ln(ln(5))^2,x,method=_RETURNVERBOSE)

[Out]

-2/9*ln(ln(5))^2*(2+x)*x^2

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 16, normalized size = 0.84 \begin {gather*} -\frac {2}{9} \, {\left (x^{3} + 2 \, x^{2}\right )} \log \left (\log \relax (5)\right )^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-6*x^2-8*x)*log(log(5))^2,x, algorithm="maxima")

[Out]

-2/9*(x^3 + 2*x^2)*log(log(5))^2

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 13, normalized size = 0.68 \begin {gather*} -\frac {2\,x^2\,{\ln \left (\ln \relax (5)\right )}^2\,\left (x+2\right )}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(log(5))^2*(8*x + 6*x^2))/9,x)

[Out]

-(2*x^2*log(log(5))^2*(x + 2))/9

________________________________________________________________________________________

sympy [A]  time = 0.05, size = 27, normalized size = 1.42 \begin {gather*} - \frac {2 x^{3} \log {\left (\log {\relax (5 )} \right )}^{2}}{9} - \frac {4 x^{2} \log {\left (\log {\relax (5 )} \right )}^{2}}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*(-6*x**2-8*x)*ln(ln(5))**2,x)

[Out]

-2*x**3*log(log(5))**2/9 - 4*x**2*log(log(5))**2/9

________________________________________________________________________________________