Optimal. Leaf size=21 \[ \log \left (\log \left (x+\frac {1}{4} (2-x) \log \left (\frac {5}{e^2}\right ) \log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x+(-2+x) \log \left (\frac {5}{e^2}\right )+x \log \left (\frac {5}{e^2}\right ) \log (x)}{\left (-4 x^2+\left (-2 x+x^2\right ) \log \left (\frac {5}{e^2}\right ) \log (x)\right ) \log \left (\frac {1}{4} \left (4 x+(2-x) \log \left (\frac {5}{e^2}\right ) \log (x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 \left (1+\frac {1}{4} (2-\log (5))\right )}{\left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )}+\frac {2 (-2+\log (5))}{x \left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )}+\frac {(2-\log (5)) \log (x)}{\left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )}\right ) \, dx\\ &=(2-\log (5)) \int \frac {\log (x)}{\left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx+(6-\log (5)) \int \frac {1}{\left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx+(2 (-2+\log (5))) \int \frac {1}{x \left (4 x-4 \left (1-\frac {\log (5)}{2}\right ) \log (x)+2 x \left (1-\frac {\log (5)}{2}\right ) \log (x)\right ) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx\\ &=(2-\log (5)) \int \frac {\log (x)}{(4 x-(-2+x) (-2+\log (5)) \log (x)) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx+(6-\log (5)) \int \frac {1}{(4 x-(-2+x) (-2+\log (5)) \log (x)) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx+(2 (-2+\log (5))) \int \frac {1}{x (4 x-(-2+x) (-2+\log (5)) \log (x)) \log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 17, normalized size = 0.81 \begin {gather*} \log \left (\log \left (x-\frac {1}{4} (-2+x) (-2+\log (5)) \log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 19, normalized size = 0.90 \begin {gather*} \log \left (\log \left (-\frac {1}{4} \, {\left ({\left (x - 2\right )} \log \relax (5) - 2 \, x + 4\right )} \log \relax (x) + x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 35, normalized size = 1.67 \begin {gather*} \log \left (2 \, \log \relax (2) - \log \left (-x \log \relax (5) \log \relax (x) + 2 \, x \log \relax (x) + 2 \, \log \relax (5) \log \relax (x) + 4 \, x - 4 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 18, normalized size = 0.86
method | result | size |
risch | \(\ln \left (\ln \left (\frac {\left (2-x \right ) \left (\ln \relax (5)-2\right ) \ln \relax (x )}{4}+x \right )\right )\) | \(18\) |
norman | \(\ln \left (\ln \left (\frac {\left (2-x \right ) \ln \left (5 \,{\mathrm e}^{-2}\right ) \ln \relax (x )}{4}+x \right )\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 27, normalized size = 1.29 \begin {gather*} \log \left (-2 \, \log \relax (2) + \log \left (-{\left (x {\left (\log \relax (5) - 2\right )} - 2 \, \log \relax (5) + 4\right )} \log \relax (x) + 4 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {\ln \left (5\,{\mathrm {e}}^{-2}\right )\,\left (x-2\right )-4\,x+x\,\ln \left (5\,{\mathrm {e}}^{-2}\right )\,\ln \relax (x)}{\ln \left (x-\frac {\ln \left (5\,{\mathrm {e}}^{-2}\right )\,\ln \relax (x)\,\left (x-2\right )}{4}\right )\,\left (4\,x^2+\ln \left (5\,{\mathrm {e}}^{-2}\right )\,\ln \relax (x)\,\left (2\,x-x^2\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.99, size = 20, normalized size = 0.95 \begin {gather*} \log {\left (\log {\left (x + \left (\frac {1}{2} - \frac {x}{4}\right ) \log {\relax (x )} \log {\left (\frac {5}{e^{2}} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________