3.65.41 \(\int \frac {-7+10 e^x+5 e^{2 x}+15 x-6 x^2+(-4+4 x) \log (2 x)}{-5 e^{2 x}+3 x-10 e^x x-6 x^2+4 x \log (2 x)} \, dx\)

Optimal. Leaf size=29 \[ x-\log \left (\left (e^x+x\right )^2-\frac {1}{5} x (3-x+4 \log (2 x))\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 2.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7+10 e^x+5 e^{2 x}+15 x-6 x^2+(-4+4 x) \log (2 x)}{-5 e^{2 x}+3 x-10 e^x x-6 x^2+4 x \log (2 x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-7 + 10*E^x + 5*E^(2*x) + 15*x - 6*x^2 + (-4 + 4*x)*Log[2*x])/(-5*E^(2*x) + 3*x - 10*E^x*x - 6*x^2 + 4*x*
Log[2*x]),x]

[Out]

-x + 7*Defer[Int][(5*E^(2*x) - 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2*x])^(-1), x] - 10*Defer[Int][E^x/(5*E^(2*x)
- 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2*x]), x] - 18*Defer[Int][x/(5*E^(2*x) - 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2
*x]), x] + 10*Defer[Int][(E^x*x)/(5*E^(2*x) - 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2*x]), x] + 12*Defer[Int][x^2/(
5*E^(2*x) - 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2*x]), x] - 8*Defer[Int][(x*Log[2*x])/(5*E^(2*x) - 3*x + 10*E^x*x
 + 6*x^2 - 4*x*Log[2*x]), x] - 4*Defer[Int][Log[2*x]/(-5*E^(2*x) + 3*x - 10*E^x*x - 6*x^2 + 4*x*Log[2*x]), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {7-10 e^x-18 x+10 e^x x+12 x^2+4 \log (2 x)-8 x \log (2 x)}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}\right ) \, dx\\ &=-x+\int \frac {7-10 e^x-18 x+10 e^x x+12 x^2+4 \log (2 x)-8 x \log (2 x)}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx\\ &=-x+\int \left (\frac {7}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}-\frac {10 e^x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}-\frac {18 x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}+\frac {10 e^x x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}+\frac {12 x^2}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}-\frac {8 x \log (2 x)}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)}-\frac {4 \log (2 x)}{-5 e^{2 x}+3 x-10 e^x x-6 x^2+4 x \log (2 x)}\right ) \, dx\\ &=-x-4 \int \frac {\log (2 x)}{-5 e^{2 x}+3 x-10 e^x x-6 x^2+4 x \log (2 x)} \, dx+7 \int \frac {1}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx-8 \int \frac {x \log (2 x)}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx-10 \int \frac {e^x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx+10 \int \frac {e^x x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx+12 \int \frac {x^2}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx-18 \int \frac {x}{5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.68, size = 34, normalized size = 1.17 \begin {gather*} x-\log \left (5 e^{2 x}-3 x+10 e^x x+6 x^2-4 x \log (2 x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-7 + 10*E^x + 5*E^(2*x) + 15*x - 6*x^2 + (-4 + 4*x)*Log[2*x])/(-5*E^(2*x) + 3*x - 10*E^x*x - 6*x^2
+ 4*x*Log[2*x]),x]

[Out]

x - Log[5*E^(2*x) - 3*x + 10*E^x*x + 6*x^2 - 4*x*Log[2*x]]

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 43, normalized size = 1.48 \begin {gather*} x - \log \left (2 \, x\right ) - \log \left (-\frac {6 \, x^{2} + 10 \, x e^{x} - 4 \, x \log \left (2 \, x\right ) - 3 \, x + 5 \, e^{\left (2 \, x\right )}}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x-4)*log(2*x)+5*exp(x)^2+10*exp(x)-6*x^2+15*x-7)/(4*x*log(2*x)-5*exp(x)^2-10*exp(x)*x-6*x^2+3*x)
,x, algorithm="fricas")

[Out]

x - log(2*x) - log(-(6*x^2 + 10*x*e^x - 4*x*log(2*x) - 3*x + 5*e^(2*x))/x)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 35, normalized size = 1.21 \begin {gather*} x - \log \left (-6 \, x^{2} - 10 \, x e^{x} + 4 \, x \log \relax (2) + 4 \, x \log \relax (x) + 3 \, x - 5 \, e^{\left (2 \, x\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x-4)*log(2*x)+5*exp(x)^2+10*exp(x)-6*x^2+15*x-7)/(4*x*log(2*x)-5*exp(x)^2-10*exp(x)*x-6*x^2+3*x)
,x, algorithm="giac")

[Out]

x - log(-6*x^2 - 10*x*e^x + 4*x*log(2) + 4*x*log(x) + 3*x - 5*e^(2*x))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 33, normalized size = 1.14




method result size



norman \(x -\ln \left (5 \,{\mathrm e}^{2 x}+10 \,{\mathrm e}^{x} x -4 x \ln \left (2 x \right )+6 x^{2}-3 x \right )\) \(33\)
risch \(x -\ln \relax (x )-\ln \left (\ln \left (2 x \right )-\frac {6 x^{2}+10 \,{\mathrm e}^{x} x +5 \,{\mathrm e}^{2 x}-3 x}{4 x}\right )\) \(40\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x-4)*ln(2*x)+5*exp(x)^2+10*exp(x)-6*x^2+15*x-7)/(4*x*ln(2*x)-5*exp(x)^2-10*exp(x)*x-6*x^2+3*x),x,metho
d=_RETURNVERBOSE)

[Out]

x-ln(5*exp(x)^2+10*exp(x)*x-4*x*ln(2*x)+6*x^2-3*x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 34, normalized size = 1.17 \begin {gather*} x - \log \left (\frac {6}{5} \, x^{2} - \frac {1}{5} \, x {\left (4 \, \log \relax (2) + 3\right )} + 2 \, x e^{x} - \frac {4}{5} \, x \log \relax (x) + e^{\left (2 \, x\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x-4)*log(2*x)+5*exp(x)^2+10*exp(x)-6*x^2+15*x-7)/(4*x*log(2*x)-5*exp(x)^2-10*exp(x)*x-6*x^2+3*x)
,x, algorithm="maxima")

[Out]

x - log(6/5*x^2 - 1/5*x*(4*log(2) + 3) + 2*x*e^x - 4/5*x*log(x) + e^(2*x))

________________________________________________________________________________________

mupad [B]  time = 4.37, size = 32, normalized size = 1.10 \begin {gather*} x-\ln \left (5\,{\mathrm {e}}^{2\,x}-3\,x-4\,x\,\ln \left (2\,x\right )+10\,x\,{\mathrm {e}}^x+6\,x^2\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(15*x + 5*exp(2*x) + 10*exp(x) - 6*x^2 + log(2*x)*(4*x - 4) - 7)/(5*exp(2*x) - 3*x - 4*x*log(2*x) + 10*x*
exp(x) + 6*x^2),x)

[Out]

x - log(5*exp(2*x) - 3*x - 4*x*log(2*x) + 10*x*exp(x) + 6*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.40, size = 42, normalized size = 1.45 \begin {gather*} - \frac {3 x}{5} - \frac {\log {\left (\frac {6 x^{2}}{5} + 2 x e^{x} - \frac {4 x \log {\left (2 x \right )}}{5} - \frac {3 x}{5} + e^{2 x} \right )}}{5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x-4)*ln(2*x)+5*exp(x)**2+10*exp(x)-6*x**2+15*x-7)/(4*x*ln(2*x)-5*exp(x)**2-10*exp(x)*x-6*x**2+3*
x),x)

[Out]

-3*x/5 - log(6*x**2/5 + 2*x*exp(x) - 4*x*log(2*x)/5 - 3*x/5 + exp(2*x))/5

________________________________________________________________________________________