3.65.38 \(\int \frac {-4-e^5+e^7 (20+40 x)}{4+e^5} \, dx\)

Optimal. Leaf size=20 \[ -x+\frac {20 e^7 x (1+x)}{4+e^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 2, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12} \begin {gather*} \frac {5 e^7 (2 x+1)^2}{4+e^5}-x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-4 - E^5 + E^7*(20 + 40*x))/(4 + E^5),x]

[Out]

-x + (5*E^7*(1 + 2*x)^2)/(4 + E^5)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-4-e^5+e^7 (20+40 x)\right ) \, dx}{4+e^5}\\ &=-x+\frac {5 e^7 (1+2 x)^2}{4+e^5}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 32, normalized size = 1.60 \begin {gather*} -\frac {4 x+e^5 x-20 e^7 x-20 e^7 x^2}{4+e^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-4 - E^5 + E^7*(20 + 40*x))/(4 + E^5),x]

[Out]

-((4*x + E^5*x - 20*E^7*x - 20*E^7*x^2)/(4 + E^5))

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 25, normalized size = 1.25 \begin {gather*} \frac {20 \, {\left (x^{2} + x\right )} e^{7} - x e^{5} - 4 \, x}{e^{5} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((40*x+20)*exp(7)-exp(5)-4)/(4+exp(5)),x, algorithm="fricas")

[Out]

(20*(x^2 + x)*e^7 - x*e^5 - 4*x)/(e^5 + 4)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 25, normalized size = 1.25 \begin {gather*} \frac {20 \, {\left (x^{2} + x\right )} e^{7} - x e^{5} - 4 \, x}{e^{5} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((40*x+20)*exp(7)-exp(5)-4)/(4+exp(5)),x, algorithm="giac")

[Out]

(20*(x^2 + x)*e^7 - x*e^5 - 4*x)/(e^5 + 4)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 23, normalized size = 1.15




method result size



gosper \(-\frac {x \left (-20 x \,{\mathrm e}^{7}+{\mathrm e}^{5}-20 \,{\mathrm e}^{7}+4\right )}{4+{\mathrm e}^{5}}\) \(23\)
default \(\frac {{\mathrm e}^{7} \left (20 x^{2}+20 x \right )-x \,{\mathrm e}^{5}-4 x}{4+{\mathrm e}^{5}}\) \(29\)
norman \(-\frac {\left ({\mathrm e}^{5}-20 \,{\mathrm e}^{7}+4\right ) x}{4+{\mathrm e}^{5}}+\frac {20 \,{\mathrm e}^{7} x^{2}}{4+{\mathrm e}^{5}}\) \(32\)
risch \(\frac {20 \,{\mathrm e}^{7} x^{2}}{4+{\mathrm e}^{5}}+\frac {20 \,{\mathrm e}^{7} x}{4+{\mathrm e}^{5}}-\frac {{\mathrm e}^{5} x}{4+{\mathrm e}^{5}}-\frac {4 x}{4+{\mathrm e}^{5}}\) \(46\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((40*x+20)*exp(7)-exp(5)-4)/(4+exp(5)),x,method=_RETURNVERBOSE)

[Out]

-x*(-20*x*exp(7)+exp(5)-20*exp(7)+4)/(4+exp(5))

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 25, normalized size = 1.25 \begin {gather*} \frac {20 \, {\left (x^{2} + x\right )} e^{7} - x e^{5} - 4 \, x}{e^{5} + 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((40*x+20)*exp(7)-exp(5)-4)/(4+exp(5)),x, algorithm="maxima")

[Out]

(20*(x^2 + x)*e^7 - x*e^5 - 4*x)/(e^5 + 4)

________________________________________________________________________________________

mupad [B]  time = 0.65, size = 26, normalized size = 1.30 \begin {gather*} \frac {{\mathrm {e}}^{-7}\,{\left ({\mathrm {e}}^5-{\mathrm {e}}^7\,\left (40\,x+20\right )+4\right )}^2}{80\,\left ({\mathrm {e}}^5+4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(5) - exp(7)*(40*x + 20) + 4)/(exp(5) + 4),x)

[Out]

(exp(-7)*(exp(5) - exp(7)*(40*x + 20) + 4)^2)/(80*(exp(5) + 4))

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 29, normalized size = 1.45 \begin {gather*} \frac {20 x^{2} e^{7}}{4 + e^{5}} + \frac {x \left (- e^{5} - 4 + 20 e^{7}\right )}{4 + e^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((40*x+20)*exp(7)-exp(5)-4)/(4+exp(5)),x)

[Out]

20*x**2*exp(7)/(4 + exp(5)) + x*(-exp(5) - 4 + 20*exp(7))/(4 + exp(5))

________________________________________________________________________________________